Solar dryers: A review of mechanism, methods and critical analysis of transport models applicable in solar drying of product

Onyinyechi Nnamchi, Cyprian Tom, Godwin Akpan, Murphy Umunna, David Ubong, Mathew Ibeh, Adindu Linus-Chibuezeh, Leonard Akuwueke, Stephen Nnamchi, Augustine Ben, Macmanus Ndukwu

Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (2) : 100118.

PDF(7448 KB)
PDF(7448 KB)
Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (2) : 100118. DOI: 10.1016/j.gerr.2025.100118
Review article

Solar dryers: A review of mechanism, methods and critical analysis of transport models applicable in solar drying of product

Author information +
History +

Abstract

As the world transitions towards green energy sources solar drying has become a vital technology for sustainable agricultural production, offering a cleaner, more efficient alternative to traditional drying methods. Solar drying has been demonstrated to be a sustainable and eco-friendly drying process for drying and preserving agricultural products, offering advantages over traditional methods that include faster drying rates, improved product quality, and reduced energy costs. This review examines the mechanisms and methods applicable to solar drying, including indirect and direct solar drying, hybrid systems combining solar drying with other heating sources, and thermal storage materials to address challenges such as intermittent solar radiation. The designs of solar drying systems include various solar collector configurations, drying chamber geometries, and air conveyance mechanisms crucial for efficient drying. This review therefore explores different design approaches and their effects on drying performance, highlighting the importance of understanding the complex interactions between system components. Additionally, the approach for Energy and exergy analysis of solar drying systems was explored, providing insights into energy utilization and efficiency. Finally, this review elucidates the complex transport phenomena governing solar drying, including moisture diffusion, heat and mass transfer, and airflow patterns. It identifies knowledge gaps in existing models and future research directions in transport modelling phenomena to advance sustainable, efficient, and scalable solar drying techniques.

Keywords

Heat and mass transfer / Solar drying / Bio-materials / Drying

Cite this article

Download citation ▾
Onyinyechi Nnamchi, Cyprian Tom, Godwin Akpan, Murphy Umunna, David Ubong, Mathew Ibeh, Adindu Linus-Chibuezeh, Leonard Akuwueke, Stephen Nnamchi, Augustine Ben, Macmanus Ndukwu. Solar dryers: A review of mechanism, methods and critical analysis of transport models applicable in solar drying of product. Green Energy and Resources, 2025, 3(2): 100118 https://doi.org/10.1016/j.gerr.2025.100118

References

[1]
Ademiluyi F.T., Abowei M.F.N., 2013. Theoretical model for predicting moisture ratio during drying of spherical particles in a rotary dryer. Model. Simulat. Eng. 2013, 491843.
[2]
Adeyi O., Adeyi A.J., Oke E.O., 2018. Empirical modeling of thin layer drying characteristics of nauclea latifolia leaves. J. Niger. Soc. Chem. Eng. 13 (10), 17-25.
[3]
Ahmad A., Prakash Om, 2019. Thermal analysis of north wall insulated greenhouse dryer at different bed conditions operating under natural convection mode. Environ. Prog. Sustain. Energy 2019, e13257.
[4]
Ahmadi A., Ehyaei M.A., Doustgani A., El Haj Assad M., Hmida A., Jamali D.H., Kumar R., Li Z.X., Razmjoo A., 2021. Recent residential applications of lowtemperature solar collector. J. Clean. Prod. 279 (2021), 123549.
[5]
Ahmed A., Almas S., Kissaka K., Suleiman R., 2023. Effect of sun-dry on nutritional and sensory acceptability of wilted African leafy vegetables: a case study of Morogoro Region, Tanzania. Front. Sustain. Food Syst. 7, 1161961. https://doi.org/10.3389/fsufs.2023.1161961.
[6]
Akbulut A., Durmus¸ A., 2010. Energy and exergy analyses of thin-layer drying of mulberry in a forced solar dryer. Energy 35 (2010), 1754-1763.
[7]
Akpan G.E., Aregbesola O.A., Olagunju T.M., 2024. Analysis of drying kinetics and energy consumption of brine pretreated freshwater prawn fillets. J. Food Process. Eng. 47 (7), e14683. https://doi.org/10.1111/jfpe.14683.
[8]
Akpan G.E., Udom I.J., Olatunji O.M., Etim P.J., Ekanem J.T., Ogundahunsi O.E., 2022. Use of response surface methodology (RSM) to optimize the process parameters for drying prawns (Macrobrachium felicinum). Adeleke Univ. J. Eng. Technol. 5 (1), 63-71.
[9]
Al-Amri A.M., Ismail M.A., Al Hassan Y.A., Almuhanna E.A., 2021. Effect of solar drying on I: some physico-chemical properties of fruits of two date palm ( Phoenix dactylifera L.) varieties. Sol. Energy 218, 425-434.
[10]
Alara O.R., Abdurahman N.H., Abdul Mudalip S.K., Olalere O.A., 2019. Effect of drying methods on the free radicals scavenging activity of Vernonia amygdalina growing in Malaysia. J. King. Saud. Univ. Sci. 18 (3). https://doi.org/10.1016/jssas.2017.09.003.
[11]
Alara O.R., Abdurahman N.H., Olalere O.A., 2019. Mathematical modeling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. J. Saudi Soc. Agric. Sci. 18 (3), 309-315.
[12]
Allaf T., Tomao V., Ruiz K., Bachari K., ElMaataoui M., Chemat F., 2013. Deodorization by instant controlled pressure drop autovaporization of rosemary leaves prior to solvent extraction of antioxidants. LWT-Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.). 51, 111- 119. https://doi.org/10.1016/j.lwt.2012.11.007.
[13]
Ansu A.K., Sharma R.K., Tyagi V.V., Tripathi D., 2020. Prediction of thermal properties and reliability testing of binary eutectic mixture of polyethylene glycol 2000 and 10000 as phase change materials. ChemistrySelect 5, 9745-9757.
[14]
Anuma O., Ndukwu M.C., Usoh G., Sam E.O., Akpan G., Oriaku L., Orji F., Akuwueke L., Ben A.E., Bekkioui N., Simo-Tagne M., Abam F., 2024. Energy and exergy analysis of a natural convection solar greenhouse drier with insulated opaque walls for drying aromatic yellow pepper. Renew. Energy 233 (2024), 121141.
[15]
Aravindan V., Dineshkumar A., Girisprasath B., Karthilheyan V., Ebenezer D., 2017. Moisture removal rate of solar dryers-a review. J. Chem. Pharmaceut. Sci. 7, 218-224.
[16]
Ashtiani S.H.M., Salarikia A., Golzarian M.R., 2017. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Inform. Process. Agric. 4 (2), 128-139. https://doi.org/10.1016/j.inpa.2017.03.001.
[17]
Atalay H., 2019. Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance. Energy 189, 116180. https://doi.org/10.1016/j.energy.2019.116180.
[18]
Atalay H., 2020. Assessment of energy and cost analysis of packed bed and phase change material thermal energy storage systems for the solar energy-assisted drying process. Sol. Energy 198, 12-138. https://doi.org/10.1016/j.solener.2020.01.051.
[19]
Atalay H., Cankurtaran E., 2021. Energy, exergy, exergoeconomic and exergyenvironmental analyses of a large -scale solar dryer with PCM energy storage medium. Energy 216, 119221.
[20]
Bal L.M., Satya S., Naik S.N., 2010. Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew. Sustain. Energy Rev. 14 (8), 2298-2314. https://doi.org/10.1016/j.rser.2010.04.014.
[21]
Bala B.K., Mondol M.R., Biswas B.K., Das Chowdury B.L., Janjai S., 2003. Solar drying of pineapple using solar tunnel drier. Renew. Energy 28 (2), 183-190.
[22]
Baniasadi E., Ranjbar S., Boostanipour O., 2017. Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage. Renew. Energy 112 (2017), 143-150. https://doi.org/10.1016/j.renene.2017.05.043.
[23]
Bansal N.K., Sharma V.K., 1986. Glazing materials for solar collectors. In: GargH.P. (Ed.), Solar Water Heating Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5480-9_18.
[24]
Barbosa E.G., de Araujo M.E.V., de Moraes M.J., Martins M.A., Alves B.G.X., Barbosa E.G., 2019. Influence of the absorber tubes configuration on the performance of low cost solar water heating systems. J. Clean. Prod. 222, 22-28. https://doi.org/10.1016/j.jclepro.2019.03.020.
[25]
Bashir M., Xi Y., Hassan M., Makkawi Y., 2017. Modeling and performance analysis of biomass fast pyrolysis in a solar-thermal reactor. ACS Sustain. Chem. Eng 2017 (5), 3795-3807.
[26]
Bena B., Fuller R.J., 2002. Natural convection solar dryer with biomass backup heater. Sol. Energy 72, 75-83.
[27]
Bennamoun L., Belhamri A., 2008. Mathematical description of heat and mass transfer during deep bed drying: effect of product shrinkage on bed porosity. Appl. Therm. Eng. 28 (17-18), 2236-2244.
[28]
Berk Z.,2018. Chapter 22-Dehydration. In: BerkZ. (Ed.), Food Science and Technology, Food Process Engineering and Technology, (Third Edition), Academic Press, 2018, pp. 513-566. ISBN 9780128120187. https://doi.org/10.1016/B978-0-12-812018-7.00022-1.
[29]
Bihercz G., Beke J., 2006. Semi-empirical model of convective drying with wide range layer depth validity. Dry. Technol 24 (9), 1165-1172.
[30]
Billal A., Hanini S., Benhamou A., Chiban D., 2018. Comparative approach to the performance of direct and indirect solar drying of sludge from sewage plants, experimental and theoretical evaluation. Sol. Energy 159 (2018), 722-732.
[31]
Borah A., Hazarika K., Khayer S.M., 2015. Drying kinetics of whole and sliced turmeric rhizomes (Curcuma longa L.) in a solar conduction dryer. Inform. Process. Agric. 2 (2), 85-92.
[32]
Buker M.S., Riffat S.B., 2015. Building integrated solar thermal collectors-a review. Renew. Sustain. Energy Rev. 51, 327-346.
[33]
Cameron C., Pachauri S., Rao N.D., McCollum D., Rogelj J., Riahi K., 2016. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. Nat. Energy 1 (1), 15010. https://doi.org/10.1038/nenergy.2015.10.
[34]
Campbell H.R., Alsharif F.M., Marsac P.J., Lodder R.A., 2022. The development of a novel pharmaceutical formulation of D-tagatose for spray-drying. J. Pharmaceut. Innovation 17 (1), 194-206. https://doi.org/10.1007/s12247-02009507-4.
[35]
Campos D., Aguilar-Galvez A., Garcıa-Rıos D., Chirinos R., Limaymanta E., Pedreschi R., 2019. Postharvest storage and cooking techniques affect the stability of glucosinolates and myrosinase activity of Andean mashua tubers (Tropaeolum tuberosum). Int. J. Food Sci. Technol. 54 (7), 2387-2395. https://doi.org/10.1111/ijfs.14150.
[36]
Cao K., Xu H., Zhang R., Xu D., Yan L., Sun Y., Xia L., Zhao J., Zou Z., Bao E., 2019. Renewable and sustainable strategies for improving the thermal environment of Chinese solar greenhouses. Energy Build 202, 109414. https://doi.org/10.1016/j.enbuild.2019.109455-208.
[37]
Castro A.M., Mayorga E.Y., Moreno F.L., 2018. Mathematical modeling of convective drying of fruits: a review. J. Food Eng. 223, 152-167. https://doi.org/10.1016/j.jfoodeng.2017.12.
[38]
César L.V.E., Lilia C.M.A., Octavio G.V., Orlando S.S., Alfredo D.N., 2021. Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L). Energy 220 (2021), 119740.
[39]
Chabane F., Bensahal D., Brima A., Moummi N., 2019. Solar drying of drying agricultural product (Apricot). Math. Model. Eng. Probl. 6 (1), 92-98. https://doi.org/10.18280/mmep.060112.
[40]
Chauhan P.S., Kumar A., 2016a. Performance analysis of greenhouse dryer by using insulated north wall under natural convection mode. Energy Rep. 2, 107-116 (2016).
[41]
Chauhan P.S., Kumar A., 2016b. Heat transfer analysis of north wall insulated greenhouse dryer under natural convection mode. Energy. https://doi.org/10.1016/j.energy.2016.11.006.
[42]
Chauhan P.S., Kumar A., Nuntadusit C., 2018. Thermo-environomical and drying kinetics of bitter gourd flakes drying under north wall insulated greenhouse dryer. Sol. Energy 162, 205-216.
[43]
Cholera S.P., Prajapati G.V., Chauhan P.M., Dulavat M.S., Kelaiya S.V., 2024. Economic Feasibility of Solar Tunnel Drying for Red Chillies. Available at SSRN 4968790 https://doi.org/10.2139/ssrn.4968790.
[44]
Chopde S., Datir R., Deshmukh G., Dhotre A., Patil M., 2020. Nanoparticle formation by nanospray drying & its application in nanoencapsulation of food bioactive ingredients. J. Agric. Food Res. 2. https://doi.org/10.1016/j.jafr.2020.100085,2666-1543.
[45]
Cocco R., Karri S.R., Knowlton T., 2014. Introduction to fluidization. Chem. Eng. Progress 110 (11), 21-29.
[46]
Corrêa P.C., Botelho F.M., Oliveira G.H.H., Goneli A.L.D., Resende O., Campos S.D.C., 2011. Mathematical modeling of the drying process of corn ears. Acta Sci. Agron. 33, 575-581.
[47]
Da Silva W.P., e Silva C.M., Gama F.J., Gomes J.P., 2014. Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J. Saud. Soc. Agric. Sci. 13 (1), 67-74.
[48]
Da Silva W.P., Galv-ao I.B., e Silva C.M., de Farias Aires J.E., de Figueirêdo R.M.F., 2020. Empirical model for describing continuous and intermittent drying kinetics of apple pieces. Heat Mass Trans. 56 (4), 1263-1274.
[49]
Dairo O.U., Olayanju T.M.A., 2012. Convective thin-layer drying characteristics of sesame seed. Int. J. Eng. Res. Afr. 7, 55-62.
[50]
Danshehu B.G., Falayan C.O., Chukwuka P.C., 2008. Performance evaluation of a 150kg kerosene assisted solar cassava dryer. Niger. J. Sol. Energy 19, 101-105.
[51]
Dasore A., Konijeti R., Tarun P.N.V., Puppala N., 2020. A novel empirical model for drying of root vegetables in thin-layers. Int. J. Sci. Technol. Res. 9 (1), 2639-2642.
[52]
Dhanushkodi S., Wilson H.V., Sudhakar K., 2015. Design and performance evaluation of biomass dryer for cashew nut processing. Adv. Appl. Sci. Res. (8), 101-111.
[53]
Dhanushkodi S., Vincent H.W., Sudhakar K., 2017. Mathematical modelling of drying behavior of cashew in a solar biomass hybrid dryer. Resour. Eff. Technol. 3 (4), 359-364.
[54]
Dincer I., Rosen M.A., 2012. Exergy: Energy, Environmentand Sustainable Development, Seconded. Elsevier, Amsterdam.
[55]
Dong Z., Chang L., Jianjun Z., Jinlong J., Zhoujian A., Linjun W., 2021. Thermal economic analysis of a double-channel solar air collector coupled with draught fan: based on energy grade. Renew. Energy 170, 936-947. https://doi.org/10.1016/j.renene.2021.02.051.
[56]
Dounia C., Salhi M., Raillani B., Dihmani N., Amraqui S., Amine Moussaoui M., Mezrhab A., 2020. Trays effect on the dynamic and thermal behavior of an indirect solar dryer using CFD method. In:Book: Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems. ICEERE 2020, Saidia, Morocco, pp. 13-15. April 2020.
[57]
Duffie J.A., Beckman W.A., 2006. In: Ed (Ed.), Solar Engineering of Thermal Process. New York.
[58]
Dutta P., Dutta P.P., Kalita P., 2021. Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer. Renew. Energy 163, 599-612. https://doi.org/10.1016/J.RENENE.2020.08.118.
[59]
Ebadi M.T., Azizi M., Sefidkon F., Ahmadi N., 2015. Influence of different drying methods on drying period, essential oil content and composition of Lippia citriodorakunth. J. Appl. Res. Med. Aromatic Plants 2 (4), 182-187. https://doi.org/10.1016/j.jarmap.2015.06.001.
[60]
Ekka J.P., Bala K., Muthukumar P., Kanaujiya D.K., 2020. Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (kaempferia parviflora) using two successive air mass flow rates. Renew. Energy. https://doi.org/10.1016/j.renene.2020.01.035.S0960148120300409.
[61]
Ekop I., Mathew I., Akpan G., Akuwueke L., Umunna M.F., Ekejiuba V.N., Ndubuisi C.O., Igbojionu D.O., Anuma O., Ndukwu M.C., 2024. Comparative heat loss dynamics of pyramid shaped solar greenhouse dryer under different opaque wall orientation. In:Proceedings of the 24th International Conference and 44th Annual General Meetings of the Nigerian Institution of Agricultural Engineers (A Division of Nigerian Society of Engineers) (Abuja, Nigeria).
[62]
Elepaño R.A., Del Mundo R.R., Gewali B.M., Sackona P., 2005. Technology packages: solar, biomass, and hybrid dryers. Regional Energy Resources Information Center, RERIC 2-18.
[63]
Erbay Z., Icier F., 2010. A review of thin layer drying of foods: theory, modeling, and experimental results. Crit. Rev. Food Sci. Nutr. 50 (5), 441-464.
[64]
Ertekin C., Firat M.Z., 2017. A comprehensive review of thin-layer drying models used in agricultural products. Crit. Rev. Food Sci. Nutr. 57 (4), 701-717.
[65]
Fadhel A., Kooli S., Farhat A., Belghith A., 2014. Experimental study of the drying of hot red pepper in the open air, under greenhouse and in a solar drier. Int. J. Renew. Energy Biofuels 2014, 1-14. https://doi.org/10.5171/2014.515285.
[66]
Fan M., You S., Gao X., Zhang H., Li B., Zheng W., Sun L., Zhou T., 2019. A comparative study on the performance of liquid flat-plate solar collector with a new V-corrugated absorber. Energy Convers. Manag. 184, 235-248.
[67]
Fang X., Li Y., 2000. Numerical simulation and sensitivity of lattice passive solar heating wall. Sol. Energy 69 (1), 55-66.
[68]
Farahat S., Sarhaddi F., Ajam H., 2009. Exergetic optimization of flat plate solar collectors. Renew. Energy 34, 1169-1174.
[69]
Farajzadeh R., Petrus Lomans B., Hajibeygi H., Bruining J., 2022. Exergy return on exergy investment and CO 2 intensity of the underground biomethanation process. ACS Sustain. Chem. Eng. 10, 10318-10326, 2022.
[70]
Fernandes L., Fernandes J.R., Tavares P.B., 2022. Design of a friendly solar food dryer for domestic over-production. Inside Solaris 2 (4), 495-508. https://doi.org/10.3390/solar2040029.
[71]
Feyza A., 2012. Solar-energy drying systems. Modeling and Optimisation of Renewable Energy Systems. IntechOpen. https://doi.org/10.5772/39207.
[72]
Folayan J.A., Osuolale F.N., Anawe P.A.L., 2018. Data on exergy and exergy analyses of drying process of onion in a batch dryer. Data in Brief 21 (2018), 1784-1793.
[73]
Friso D., 2023. Mathematical modelling of rotary drum dryers for alfalfa drying process control. Inventions 8 (1), 11. https://doi.org/10.3390/inventions8010011.
[74]
Fterich M., Chouikhi H., Bentaher H., Maalej A., 2018. Experimental parametric study of a mixed-mode forced convection solar dryer equipped with a PV/T air collector. Sol. Energy 171 (2018), 751-760.
[75]
Fudholi A., Sopian K., Ruslan M.H., Alghoul M.A., Sulaiman M.Y., 2010. Review of solar dryers for agricultural and marine products. Renew. Sustain. Energy Rev. 14 (1), 1-30. https://doi.org/10.1016/j.rser.2009.07.032.
[76]
Ganesapillai M., Regupathi I., Murugesan T., 2008. An empirical model for the estimation of moisture ratio during microwave drying of plaster of Paris. Dry. Technol. 26 (7), 963-978.
[77]
Gbaha P., Andoh H.Y., Saraka J.K., Koua B.K., Toure S., 2007. Experimental investigation of a solar dryer with natural convective heat flow. Renew. Energy 32, 1817-1829.
[78]
Ghazanfari A., Emami S., Tabil L.G., Panigrahi S., 2006. Thin-layer drying of flax fiber: II. Modeling drying process using semi-theoretical and empirical models. Dry. Technol. 24 (12), 1637-1642.
[79]
Grant T., Ingegerd S., Federico G.G., 2020. A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2020.1765309.
[80]
Gupta M.J., Chandra P., 2002. Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control. Energy 27 (8), 777-794. https://doi.org/10.1016/S0360-5442(02)00030-0.
[81]
Gupta R., Tiwari G.N., 2005. Modeling of energy distribution inside greenhouse using the concept of solar fraction with and without reflecting surface on the north wall. Build. Environ. 40, 63-71.
[82]
Han F., Chen C., Chen H., Duan S., Lu B., Jiao Y., Li G., 2024. Research on creating the indoor thermal environment of the solar greenhouse based on the solar thermal storage and release characteristics of its north wall. Appl. Therm. Eng. 241 (2024), 122348.
[83]
Hartz T.K., Lewis J.A., Hughes H.A., 1981. Performance of modified brace institute greenhouse in Virginia. Hortic. Sci. 16, 74-78.
[84]
Hatami S., Payehaneh G., Mehrpanahi A., 2020. Energy and exergy analysis of an indirect solar dryer based on a dynamic model. J. Clean. Prod. 244, 118809.
[85]
Hawa L.C., Ubaidillah U., Mardiyani S.A., Laily A.N., Yosika N.I.W., Afifah F.N., 2021. Drying kinetics of cabya (piper retrofractum vahl) fruit as affected by hot water blanching under indirect forced convection solar dryer. Sol. Energy 214, 588-598. https://doi.org/10.1016/j.solener.2020.12.004.
[86]
Hii C.L., Jangam S.V., Ong S.P., Mujumdar A.S., 2012. Solar Drying: Fund. Appl. Innovations, vol. 2012. TPR Group Publication, Singapore, Singapore, pp. 1-50.
[87]
Honarvar B., Mowla D., 2012. Theoretical and experimental drying of a cylindrical sample by applying hot air and infrared radiation in an inert medium fluidized bed. Braz. J. Chem. Eng. 29 (2), 231-242.
[88]
Ibrahim M., Sopian K., Daud W.R.W., Alghoul M.A., Yahya M., Sulaiman M.Y., Zaharim A., 2009. Solar chemical heat pump drying system for tropical region. WSEA Trans. Environ. Dev. 5, 404-413.
[89]
Inyang U.E., Oboh I.O., Etuk B.R., 2018. Kinetic models for drying techniques—food materials. Adv. Chem. Eng. Sci. 8 (2), 27.
[90]
Islam M., Islam M.I., Tusar M., Limon A.H., 2019. Effect of cover design on moisture removal rate of a cabinet type solar dryer for food drying application. Energy Proc. 160, 769-776. https://doi.org/10.1016/j.egypro.2019.02.181.
[91]
Ismaeel H.H., Yumrutas R., 2020. Investigation of solar-assisted heat pump wheat drying system with underground thermal energy storage tank. Sol. Energy 199 (15), 538e551.
[92]
Ismail O., Akyol E., 2016. Open-air sun drying: the effect of pretreatment on drying kinetic of cherry tomato. Sigma J. Eng. Nat. Sci. 34, 141-151.
[93]
Jayashree E., Visvanathan R., Zachariah J., 2014. Quality of dry ginger (zingiber officinale) by different drying methods. J. Food Sci. Technol. 51, 3190.
[94]
Jedlińska A., Edris A., Samborska K., 2023. Sugarcane molasses spray drying by dehumidified air as the method to enhance powder recovery and physical properties of powders. J. Food Process. Eng. 46 (11), e14426. https://doi.org/10.1111/jfpe.14426.
[95]
Kabeel A.E., Khalil A., Shalaby S.M., Zayed M.E., 2016. Investigation of the thermal performances of flat, finned, and V-corrugated plate solar air heaters. J. Sol. Energy Eng. 138 (5), 051004-7.
[96]
Kalogirou S.A., 2009. Solar Energy Engineering. Elsevier, Amsterdam.
[97]
Kalogirou S.A., 2013. Solar Energy Engineering:Processes and Systems, second ed.ed. Academic Press, Elsevier Science, Amsterdam. ISBN: 978-0-12-397270-5.
[98]
Kalogirou S.A., Karellas S., Braimakis K., Stanciu C., Badescu V., 2016. Exergy analysis of solar thermal collectors and processes. Prog. Energy Combust. Sci. 56, 106-137. https://doi.org/10.1016/j.pecs.2016.05.002.
[99]
Kanfa I., fluch J., Bartali R., Baker D., 2020. Solar thermal drying driven technologies for large scale industrial application. State of the arts, gaps and opportunity. Int. J. Energy Res. 44 (13), 9864-9888.
[100]
Karim M.A., Hawlader M.N.A., 2005. Drying characteristics of banana: theoretical modeling and experimental validation. J. Food Eng. 70 (1), 35-45.
[101]
Karthikeyan A.K., Murugavelh S., 2018. Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed-mode forced convection solar tunnel dryer. Renew. Energy 128 (A), 305-312. https://doi.org/10.1016/j.renene.2018.05.061.Elsevier Ltd.
[102]
Kemp I.C., Oakley D.E., 2002. Modelling of particulate drying in theory and practice. Drying Tech. Int. J. 20 (9), 1699-1750.
[103]
Kerr W.L., 2019. Chapter 14-Food drying and evaporation processing operations. Handbook of Farm, Dairy and Food Machinery Engineering, Third Edition. Academic Press, pp. 353-387. https://doi.org/10.1016/B978-0-12-814803-7.00014-2.
[104]
Kesavan S., Arjunan T.V., 2018. Experimental study on triple pass solar air heater with thermal energy storage for drying mint leaves. Int. J. Energy Technol. Pol. 14 (1), 34-48.
[105]
Kesavan S., Arjunan T.V., 2019. Vijayan, Thermodynamic analysis of a triple-pass solar dryer for drying potato slices. J. Therm. Anal. Calorim. 136, 159-171. https://doi.org/10.1007/s10973-018-7747-0.
[106]
Khalifa A.J.N., Al-Dabagh A.M., 2012. An experimental study of vegetable solar drying systems with and without auxiliary heat. Int. Sch. Res Not. 789324.
[107]
Khamtree S., Ratanawilai T., Nuntadusit C., 2019. Empirical modeling of air-dried rubberwood drying system. Int. J. Struct. Constr. Eng. 13 (7), 428-431.
[108]
Khazimov M.Z., Khazimov K.M., Urmashev B.A., Tazhibayev T.S., Sagyndykova Z.B., 2018. Intensification of the plant products drying process by improving solar dryer design. J. Eng. Thermophys. 27 (4), 580-592. https://doi.org/10.1134/S1810232818040203.
[109]
Khurram Y., Kunjie C., Muhammad A.K., 2020. An Introduction of Biomimetic System and Heat Pump Technology in Food Drying Industry. IntechOpen. http://dx.doi.org/10.5772/intechopen.93386.
[110]
Kong D., Wang Y., Li M., Keovisar V., Huang M., Yu Q., 2020. Experimental study of solar photovoltaic/thermal (PV/T) air collector drying performance. Sol. Energy 208, 978-989. https://doi.org/10.1016/j.solener.2020.08.067.
[111]
Korres D.N., Tzivanidis C., Koronaki I.P., Nitsas M.T., 2019. Experimental, numerical and analytical investigation of a U-type evacuated tube collectors' array. Renew. Energy 135, 218-231. https://doi.org/10.1016/j.renene.2018.12.003.
[112]
Kumar S.,M., Kumar A., Kumar R., Manchanda H.,2022. Comparison of groundnut drying in simple and modified natural convection greenhouse dryers: thermal, environmental and kinetic analyses. J. Stored Prod. Res. 98 (2022), 101990. https://doi.org/10.1016/j.jspr.2022.101990.
[113]
Kumar S.,M., Kumar A., Kumar R., Manchanda H., 2022. Comparison of groundnut drying in simple and modified natural convection greenhouse dryers: thermal, environmental and kinetic analyses. J. Stored Prod. Res. 98, 101990. https://doi.org/10.1016/j.jspr.2022.101990.
[114]
Kumar S., Kumar A., Yadav A., 2014. Experimental analysis of thermal performance of evacuated tube and flat-plate solar air collectors at different air flow rates. Int. J. Sustain. Eng. 1-14. https://doi.org/10.1080/19397038.2013.878001.
[115]
Kushwah A., Kumar A., Gaur M.K., 2022. Optimization of drying parameters for hybrid indirect solar dryer for banana slices using response surface methodology. Process Saf. Environ. Prot 170, 176-187. https://doi.org/10.1016/j.psep.2022.12.003. February 2023.
[116]
Kweesar F., Gerry R., Desak P.A., Rajnibhas S.S., 2022. Effects of Drum Drying on Physical and Pasting Properties of Three Different Pigmented Rice Varieties. The 24th Food Innovation Asia Conference 2022 (FIAC 2022). Innovative and Sustainable Development of Functional Ingredients and Materials.
[117]
Lakshmi D.V.N., Muthukumar P., Layek A., Nayak P.K., 2018. Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Renew. Energy 120, 23-34. https://doi.org/10.1016/j.renene.2017.12.053.
[118]
Lamrani B, Draoui, A., Kuznik, F., 2021. Thermal performance and environmental assessment of a hybrid solar-electrical wood dryer integrated with photovoltaic/thermal air collector and heat recovery system. Solar Energy 221, 60-74. https://doi.org/10.1016/j.solener.2021.04.035.
[119]
Lamrani B., Elmrabet Y., Ibeh M., Bekkioui N., Etim P., Chahboun A., Draoui A., Ndukwu M.C., 2022. Energy, economic analysis and mathematical modelling of mixed-mode solar drying of potato slices with thermal storage loaded V-groove collector: application to Maghreb region. Renew Energy 200 (2022), 48-58.
[120]
Lamrani B., Kuznik F., Ajbar A., Boumaza M., 2021. Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates. Energy 228, 120598. https://doi.org/10.1016/j.energy.2021.120598.
[121]
Li C., Gillum C., Toupin K., Donaldson B., 2015. Biomass boiler energy conversion system analysis with the aid of exergy-based methods. Energy Convers. Manag. 103, 665-667.
[122]
Ling H., Wang L., Chen C., Wang Y., Chen H., 2019. Effect of thermophysical properties correlation of phase change material on numerical modelling of agricultural building. Appl. Therm. Eng. 157, 113579.
[123]
Lingayat A., Chandramohan V.P., Raju V.R.K., Kumar A., 2020. Development of indirect type solar dryer and experiments for estimation of drying parameters of apple and watermelon: indirect type solar dryer for drying apple and watermelon. Therm. Sci. Eng. Prog. 16100477.
[124]
Ma G., Liu S., Xie S., Jing Y., Zhang Q., Sun J., Jia Y., 2017a. Binary eutectic mixtures of stearic acid-n-butyramide/n-octanamide as phase change materials for low temperature solar heat storage. Appl. Therm. Eng. 111, 1052-1059. https://doi.org/10.1016/j.applthermaleng.2016.10.004.
[125]
Ma G., Han L., Sun J., Jia Y., 2017b. Thermal properties and reliability of eutectic mixture of stearic acid-acetamide as phase change material for latent heat storage. J. Chem. Thermodyn. 106, 178-186. https://doi.org/10.1016/j.jct.2016.11.022.
[126]
Ma G., Sun J., Xie S., Wang Z., Jing Y., Jia Y., 2018. Solid-liquid phase equilibria of stearic acid and dicarboxylic acids binary mixtures as low-temperature thermal energy storage materials. J. Chem. Thermodyn. 120, 60-71. https://doi.org/10.1016/j.jct.2018.01.008.
[127]
Maamar M.I., Badraoui M., Mazouzi M., Mouakkir L., 2023. Mathematical modeling on vacuum drying of olive pomace. Trends Sci. 20 (2). https://doi.org/10.48048/tis.2023.3822, 3822-3822.
[128]
Madhlopa A., Jones S.A., Saka J.K., 2002. A solar air heater with composite-absorber systems for food dehydration. Renew Energy 27 (1), 27-37. https://doi.org/10.1016/s0960-1481(01)00174-4.
[129]
Majdi H., Esfahani J.A., 2018. Energy and drying time optimization of convective drying: Taguchi and LBM methods. Dry. Technol. 37 (6), 722-734. https://doi.org/10.1080/07373937.2018.1458036.
[130]
Mohanraj M., 2014. Performance of a solar-ambient hybrid source heat pump drier for copra drying under hot-humid weather conditions. Energy Sustain. Develop. 23,165-169.
[131]
Mohanraj M., Chandrasekar P., 2009. Performance of a forced convection solar drier for drying of fruits and vegetables. J. Food Sci. Technol. 46 (3), 261-266.
[132]
Mugi V.R., Chandramohan V.P., 2021. Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: a comparative assessment of forced and natural convection. Therm. Sci. Eng. Prog. 24 (2021), 100950.
[133]
Mugi V.R., Chandramohan V.P., 2022. Energy, exergy, economic and environmental (4E) analysis of passive and active-modes indirect type solar dryers while drying guava slices. Sustain. Energy Technol. Assessment 52 (2022), 102250.
[134]
Murali S., Aniesrani Delfiya D.S., Sathish Kumar K., Kumar L.R.G., Ezhil Nilavan S., Amulya P.R., Soumya Krishnan V., Alfiya P.V., Samuel M.P., 2021. Mathematical modeling of drying kinetics and quality characteristics of shrimps dried under a solar-LPG hybrid dryer. J. Aquat. Food Prod. Technol. 30 (5), 561-578. https://doi.org/10.1080/10498850.2021.1901814.
[135]
Nabnean S., Nimnuan P., 2020. Experimental performance of direct forced convection household solar dryer for drying banana. Case Stud. Therm. Eng. 22, 100787. https://doi.org/10.1016/j.csite.2020.100787.
[136]
Nader J., Allaf T., Allaf K., 2022. Instant controlled pressure drop (DIC) as an emerging food processing technology. In: GavahianM. (Ed.), Emerging Food Processing Technologies. Methods and Protocols in Food Science. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2136-3_16.
[137]
Naemsai T., Jareanjit J., Thongkaew K., 2019. Experimental investigation of solar assisted heat pump dryer with heat recovery for the drying of chili peppers. J. Food Process. Eng. 42 (6), e13193.
[138]
Naseer A., Jagmohan S., Harmeet C., Prerna G.A.A., Harleen K., 2013. Review of different drying methods: their applications and recent advances. Int. J. Food Nutr. Sci. 4 (1), 34-42.
[139]
Ndukwu M.C., Bennamoun L., 2018. Potential of integrating Na2SO4⋅ 10H2O pellets in solar drying system. Dry. Technol. 36 (9), 1017-1030.
[140]
Ndukwu M.C., Simonyan K.J., Ndirika V.I.O., 2012. Investigation of the structural changes of cocoa bean (with and without seed coat) during convective drying. Int. J. Agric. Biol. Eng. 5 (3), 75-82.
[141]
Ndukwu M.C., Bennamoun L., Abam F.I., Eke A.B., Ukoha D., 2017. Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as a thermal storage medium. Renew Energy 113, 1182-1192.
[142]
Ndukwu M.C., Bennamoun L., Abam F.I., 2018. Experience of solar drying in Africa: presentation of designs, operations, and models. Food Eng. Rev. 10 (4), 211-244.
[143]
Ndukwu M.C., Simo-Tagne M., Abam F.I., Onwuka O.S., Prince S., Bennamoun L., 2020a. Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon 6 (2), e03401.
[144]
Ndukwu M.C., Diemuodeke E.O., Abam F.I., Abada U.C., Eke-emezie, Nnanna, Simo-Tagne M., 2020. Development and modelling of heat and mass transfer analysis of a low-cost solar dryer integrated with biomass heater: Application for West African Region. Sci. African 10, e00615.
[145]
Ndukwu M.C., Onyenwigwe D., Abam F., Eke A., Dirioha C., 2020c. Development of a low-cost wind powered active solar dryer integrated with glycerol as thermal storage. Renew. Energy. https://doi.org/10.1016/j.renene.2020.03.016.
[146]
Ndukwu M.C., Simo-Tagne M., Bennamoun L., 2021. Solar drying research of medicinal and aromatic plants: An African experience with assessment of the economic and environmental impact. African J. Sci. Tech. Innov. Dev. 13 (2), 247-260.
[147]
Ndukwu M.C., Horsfall I.T., Onwude D.I., Simo-Tagne M., Abam F.I., 2021a. Physicsbased numerical simulation of heat and moisture transport in red chili subjected to mix-mode solar drying with phase change energy storage. Energy Storage 3 (6), e270. ttps://doi.org/10.1002/est2.270.
[148]
Ndukwu M.C., Horsfall I.T., Ubouh E.A., Orji F.N., Ekop I.E., Ezejiofor N.R.,2021b. Review of solar-biomass pyrolysis systems: focus on the configuration of thermalsolar systems and reactor orientation. J. King Saud Univ. Eng. Sci. 33 (2021), 413-423.
[149]
Ndukwu M.C., Ibeh M., Ekop I., Abada U., Etim P., Bennamoun L., Abam F.I., Simo-Tagne M., Gupta A., 2022a. Analysis of the heat transfer coefficient, thermal effusivity and mathematical modelling of drying kinetics of a partitioned single pass low-cost solar drying of cocoyam chips with economic assessments. Energies 15 (2022), 4457. https://doi.org/10.3390/en15124457.
[150]
Ndukwu M.C., Bassey B., Okon, Abam F.I., Lamrani B., Bekkioui N., Wu H., Egwu L. Bennamoun U., Ezewuisi C.N., Ndukwe C.B., Nwachukwu C., Ehiem J.C., 2023d. Energy and exergy analysis of solar dryer with triple air passage direction collector powered by a wind generator. Int. J. Energy Environ. Eng. 14, 63-77.
[151]
Ndukwu M.C., Ben A.E., Lamrani B., Hongwei W., et al., 2022c. Comparative experimental evaluation and thermodynamic analysis of the possibility of using degraded C15-C 50 crankcase oil waste as thermal storage materials in solar drying systems. Sol. Energy 240, 408-421. https://doi.org/10.1016/j.solener.2022.05.056.
[152]
Ndukwu M.C., Ibeh M.I., Elijah U., Ekop I., Etim P., Igbojionu D., Abam F., Lamrani B., Simo-Tagne M., Bennamoun L., 2022d. Environmental sustainability and exergy return on investment of selected solar dryer designs based on standard and extended exergy, approaches. Energy Sources, Part A Recovery, Util. Environ. Eff. 44 (4), 10647-10664. https://doi.org/10.1080/15567036.2022.2156636.
[153]
Nayanita K., Shaik S.R., Muthukumar P., 2022. Comparative study of mixed-mode type and direct mode type solar dryers using life cycle assessment. Sustain. Energy Technol. Assessments 53 (2022), 102680.
[154]
Ndukwu M.C., Akpan G., Okeahialam A.N., Umoh J.D., Ubuoh E.A., et al., 2023a. A comparison of the drying kinetics, energy consumption and colour quality of drying medicinal leaves in direct-solar dryer with different colours of collector cover. Renew. Energy 2b6, 119076.
[155]
Ndukwu M.,C., Augustine E.B., Ugwu E., et al., 2023b. Drying kinetics and thermoeconomic analysis of drying hot water blanched ginger rhizomes in a hybrid composite solar dryer with heat exchanger. Heliyon 9 ( 2023), e13606.
[156]
Ndukwu M.C., Ibeh, Matthew Okon, Bassey B., Akpan, Godwin, Kaluf C.A., Ekop, Inemesit, Chibuike Nwachukwu, Chris, Abam F.I., Lamrani, Bilal, Simo-Tagne, Merlin, Edet Ben, Augustine, Mbanasor, Jude, Bennamoun, Lyes, 2023c. Progressive review of solar drying studies of agricultural products with exergoeconomics and econo-market participation aspect. Cleaner Environ. Syst. 9 (2023), 100120.
[157]
Ndukwu M.C., Akpan G., Usoh G., Ekop I., Orji F., Anuma O., Akuwueke l., Ben A., simo-tagne M., Bennamoun L., 2024a. Influence of wall insulations and orientation on spatial heat distribution coefficient and thermal time constant for passive solar drying of yellow pepper. Sol. Energy 284 (2024), 113073.
[158]
Ndukwu M.C., Akuwueke L., Akpan G., Umunna c M.F., Usoh G., Ekop I., Etim P., Okosa I., Orji F., Ikechukwu-Edeh E.C., Ekop I., Simo-Tagne M., Bennamoun L., Wu H., Abam F., 2024b. Modification approach of Northern Wall to improve the performance of solar greenhouse dryers: a review. Green Energy and Resources 2, 100104 (2024).
[159]
Nnamchi O.A., Ndukwu M.C., Nnamchi S.N., 2021. Modelling and simulation of multicoupled heat and mass transfer processes: a case study of solar biomass dryer. Therm. Sci. Eng. Prog. 25 (2021), 101007.
[160]
Oko C.O.C., Nnamchi S.N., 2013. Coupled heat and mass transfer in a solar grain dryer. Dry. Technol. 31 (1), 82-90.
[161]
Okoroigwe E.C., Eke M.N., Ugwu H.U., 2013. Design and evaluation of combined solar and biomass dryers for small and medium enterprises for developing countries. Int. J. Phys. Sci. 8 (25), 1341-1349.
[162]
Okoroigwe E.C., Ndu E.C., Okoroigwe C.F., 2015. Comparative evaluation of the performance of an improved solar-biomass hybrid dryer. J. Energy South Afr. 26 (4), 38-51.
[163]
Okosa I., Ndukwu M., Horsfall I., Igbojionu D., 2022. The combined effect of water management and environmental control on the planting of two varieties of garden egg in a partially shaded greenhouse: an energy and yield indicator analysis. Energy Nexus 7. https://doi.org/10.1016/j.nexus.2022.100132.
[164]
Olfian H., Ajarostaghi S.S.M., Ebrahimnataj M., 2020. Development on evacuated tube solar collectors: a review of the last decade results of using nanofluids. Sol. Energy 211, 265-282. https://doi.org/10.1016/j.solener.2020.09.056.
[165]
Ong S.P., Law C.L., 2009. Mathematical modeling of thin layer drying of salak. J. Appl. Sci. 9 (17), 3048-3054.
[166]
Onwude D.I., Hashim N., Janius R.B., Nawi N.M., Abdan K., 2016a. Modeling the thinlayer drying of fruits and vegetables: a review. Compr. Rev. Food Sci. Food Saf. 15 (3), 599-618.
[167]
Onwude D., Hashim N., Chen G., 2016b. Recent advances of novel thermal combined hot air drying of agricultural crops. Trends Food Sci. Technol. 57 (A), 132-145. https://doi.org/10.1016/j.tifs.2016.09.012.
[168]
Onyenwigwe D.I., Ndukwu M.C., Igbojionu D.O., Ugwu E.C., Nwakuba N.R., Mbanaso J., 2023a. Mathematical modelling of drying kinetics, economic and environmental analysis of natural convection mix-mode solar and sun drying of pretreated potato slices. Int. J. Ambient Energy 44 (1), 1721-1732. https://doi.org/10.1080/01430750.2023.2182359.
[169]
Onyenwigwe D.I., Ndukwu M.C., Abam F.I., et al., 2023b. Eco-thermal analysis and response surface optimization of the drying rate of potato slices in a mix-mode solar dryer. Iran. J. Sci. Technol. Trans. Mech. Eng. https://doi.org/10.1007/s40997-023-00595-4.
[170]
Oparaku N.F., Unachukwu G.O., Okeke C.E., 2003. Design, construction and performance evaluation of solar cabinet dryer with auxiliary heater. Nig. J. Sol. Energy 14, 41-50.
[171]
Orphanides A., Goulas V., Gekas V., 2016. Drying technologies: vehicle to high quality herbs. Food Eng. Rev. 8 (2), 164-180. https://doi.org/10.1007/s12393-01591289.
[172]
Oyerinde A.S., 2016. Modeling of thin layer drying kinetics of tomato (Lycopersicon esculentum Mill) slices under direct sun and air-assisted solar dryer. Int. J. Eng. Appl. Sci. 3 (5), 257660.
[173]
Panwar N.L., Kaushik S.C., Kothari S., 2013. Thermal modeling and experimental validation of solar tunnel dryer: a clean energy option for drying surgical cotton. Int. J. Low Carbon Technol. 11, 16-28.
[174]
Parti M., 1990. A theoretical model for thin-layer grain drying. Dry. Technol. 8 (1), 101-122.
[175]
Pathak P.K., Chandra P., Raj G., 2019. Comparative analysis of modified and convectional dual purpose solar collector: energy and exergy analysis. Energy Sources, Part A Recovery, Util Environ. Eff. 46 (1), 2687-2703. https://doi.org/10.1080/15567036.2019.1692974.
[176]
Perre P., 2014. The proper use of mass diffusion equation in drying modelling:from simple configurations to non-fickian behaviours. In:19th International Drying Symposium IDS' 2014, pp. 24-27. Lyon, France, (2014). https://hal.archives-ouvertes.fr/hal-01824491/document.
[177]
Perwez A., Kumar R., 2019. Thermal performance investigation of the flat and spherical dimple absorber plate solar air heaters. Sol. Energy 193, 309-323. https://doi.org/10.1016/j.solener.2019.09.
[178]
Philip N., Duraipandi S., Sreekumar A., 2022. Techno-economic analysis of greenhouse solar dryer for drying agricultural produce. Renew. Energy 199, 613-627.
[179]
Pirasteh G., Saidur R., Rahman S.M.A., Rahim N.A., 2014. A review of development of solar drying applications. Renew. Sustain. Energy Rev. 31, 133-148.
[180]
Pittia P., Antonello P., 2016. Chapter 2-safety by control of water activity:drying, smoking, and salt or sugar addition. In: PrakashV., et al.Eds.), (Regulating Safety of Traditional and Ethnic Foods. Academic Press, San Diego, pp. 7-28. https://doi.org/10.1016/B978-0-12-800605-4.00002-5.
[181]
Pottler K., Sippel C.M., Beck A., Fricke J., 1999. Optimized finned absorber geometries for solar air heating collectors. Sol. Energy 67 (1e3), 35-52.
[182]
Prakash O., Kumar A., 2013. Historical review and recent trends in solar drying systems. Int. J. Green Energy 10 (7), 690-738. https://doi.org/10.1080/15435075.2012.727113.
[183]
Prommas R., Rattanadecho P., Cholaseuk D., 2010. Energy and exergy analyses in the drying process of porous media using hot air. Int. Commun. Heat Mass Tran. 37 (2010), 372-378.
[184]
Pusat S., Akkoyunlu M.T., 2017. A new empirical correlation to model drying characteristics of low-rank coals. Int. J. Oil Gas Coal Technol. 15 (3), 287-297.
[185]
Putra N., Ajiwiguna T.A., 2017. Influence of air temperature and velocity for the drying process. Procedia Eng. 170, 516-519. https://doi.org/10.1016/j.proeng.2017.03.082 (2017).
[186]
Qiu Y., Li M., Hassanien R.H.E., Wang Y., Luo X., Yu Q., 2016. Performance and operation mode analysis of a heat recovery and thermal storage solar-assisted heat pump drying system. Sol. Energy 137, 225-235.
[187]
Rabha D.K., Muthukumar P., 2017. Performance studies on a forced convection solar dryer integrated with a paraffin wax-based latent heat storage system. Sol. Energy 149, 214-226. https://doi.org/10.1016/j.solener.2017.04.012.
[188]
Rabha D.K., Muthukumar P., Somayaji C., 2017. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renew. Energy 105 (2017), 764e773.
[189]
Raj A.K., Jayaraj S., 2021. Development and assessment of generalized drying kinetics in multi-tray solar cabinet dryer. Sol. Energy 226, 112-121. https://doi.org/10.1016/j.solener.2021.08.034.
[190]
Rasakhodjaev B.S., Boboeva M.O., Dilishatov O.U., Mashrapova I.R., Bekchanov S.B., 2023. Calculation specifics in the study of solar greenhouses with thermal energyaccumulator in mind. IOP Conf. Ser. Earth Environ. Sci. 1212, 012041. https://doi.org/10.1088/1755-1315/1212/1/012041.
[191]
Sabaraz H., 2021. Advanced Drying Technology of Relevance in the Food Industry, Innovative Food Processing Technology. Elsevier, Oxford, pp. 64-81.
[192]
Sadeghi G., Najafzadeh M., Ameri M., 2020. Thermal characteristics of evacuated tube solar collectors with coil inside: an experimental study and evolutionary algorithms. Renew. Energy 151, 575-588. https://doi.org/10.1016/j.renene.2019.11.050.
[193]
Sahdev R.K., Sehrawat P., Kumar M., 2012. An experimental study on open sun drying of Vermicelli. Int. J. Adv. Eng. Sci. 2, 1-8.
[194]
S¸ ahin U., €Oztürk H.K., 2018. Comparison between artificial neural network model and mathematical models for drying kinetics of osmotically dehydrated and fresh figs under open sun drying. J. Food Process. Eng. 41, e12804.
[195]
Saikia D., Nayak P.K., Krishnan K.R., Lakshmi D.V.N., 2024. Experimental investigation of modified indirect solar dryer with integrated thermal storage material for drying of dhekia (Diplazium esculentum) fern. Environ. Sci. Pollut. Res. 31, 18143-18156. https://doi.org/10.1007/s11356-023-25310-3.
[196]
Sallam Y.I., Aly M.H., Nassar A.F., Mohamed E.A., 2015. Solar drying of whole mint plant under natural and forced convection. J. Adv. Res. 6, 171-178.
[197]
Sansaniwal S.K., Kumar M., Sahdev R.K., Bhutani V., Manchanda H., 2022. Toward natural convection solar drying of date palm fruits (Phoenix dactylifera L.): an experimental study. Environ. Prog. Sustain. Energy 1-13. https://doi.org/10.1002/ep.13862.
[198]
Seerangurayar T., Al-Ismaili A.M., Janitha Jeewantha L.H., Al-Nabhani A., 2019. Experimental investigation of shrinkage and microstructural properties of date fruits at three solar drying methods. Sol. Energy 180, 445-455. https://doi.org/10.1016/j.solener.2019.01.047.
[199]
Selim M., 2006. Evaluation of Moisture Content in Wood Fiber and Recommendation of the Best Method for its Determination. Masters thesis. https://doi.org/10.13140/RG.2.1.4795.4648.
[200]
Selimefendigil F., Ceylin, Sirin, Hakan F, Oztop, 2022. Improving the performance of an active greenhouse dryer by integrating a solar absorber north wall coated with graphene nanoplatelet-embedded black paint. Sol. Energy 231 (2022), 140-148.
[201]
Senthil K.R., Harshavardhan N., Suguna R., Poovendan V., Sri Sai V.R., 2023. Fully automated sun drying system for food grains. First International Conference on Smart Systems and Green Energy Technologies. https://doi.org/10.13052/rp-9788770229647.017.
[202]
Sevda M.S., Rathore N.S., 2010. Performance evaluation of the semicylindrical solar tunnel dryer for drying handmade paper. J. Renew. Sustain. Energy 2 (13107), 1-18.
[203]
Seyedabadi E., Khojastehpour M., Abbaspour-Fard M.H., 2017. Convective drying simulation of banana slabs considering non-isotropic shrinkage using FEM with the Arbitrary Lagrangian-Eulerian method. Int. J. Food Prop. 20 (Suppl. 1), S36-S49.
[204]
Shaker L.M., Al-Amiery A.A., Hanoon M.M., Al-Azzawi W.K., Kadhum A.A.H., 2024. Examining the influence of thermal effects on solar cells: a comprehensive review. Sustain. Energy Res. 11, 6. https://doi.org/10.1186/s40807-024-00100.
[205]
Sharma A., Tyagi V.V., Chen C.R., Buddhi D., 2009. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318-345.
[206]
Shingisov A., Alibekov R., Evlash V., Yerkebayeva S., Mailybayeva E., Tastemirova U., 2023. Creation of a methodology for determining the moisture diffusion coefficient within vacuum drying of fruits. E. Eur. J. Enterprise Technol. 3 (11),24- 32 (123). https://doi.org/10.15587/1729-4061.2023.282389.
[207]
Simo-Tagne M., Etala H.D.T., Tagne A.T., Ndukwu M.C., El Marouani M., 2022. Energy, environmental and economic analyses of an indirect cocoa bean solar dryer: a comparison between natural and forced convection. Renew. Energy 187, 1154-1172.
[208]
Simo-Tagne M., Ndukwu M.C., Bekkioui N., Tagne Tagne A., Bennamoun L., Horsfall I.T., Lamrani B., Compaoré A., Rogaume Y., Rémond R., 2024. Thermal analysis of five flat air solar collectors in Epinal (France) using modelling and simulation. Int. J. Model. Simulat. https://doi.org/10.1080/02286203.2024.2377902.
[209]
Simo-Tagne M., Ndukwu M.C., Rogaum Y., 2019. Modeling and numerical simulation of hygrothermal transfer through a building wall for locations subjected to outdoor conditions in Sub-Saharan Africa. J. Build. Eng. 26 (2019), 100901.
[210]
Simo-Tagne M., Ndukwu M.C., Zoulalian A., Bennamoun L., Kifani-Sahban F., Rogaume Y., 2020. Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chili under variable conditions. Renew. Energy 151, 659-673.
[211]
Singh S., Kumar S., 2012. New approach for thermal testing of solar dryer: development of generalized drying characteristic curve. Sol. Energy 86 (7), 1981-1991.
[212]
Singh A., Sarkar J., Sahoo R.R., 2020. Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer. Renew. Energy. https://doi.org/10.1016/j.renene.2020.04.100.
[213]
Singh R.D., Tiwari G.N., 2000. Thermal heating of controlled environment greenhouse: a transient analysis. Energy Convers. Manag. 41 (2000), 505-522.
[214]
Singh F., Katiyar V.K., Singh B.P., 2014. Mathematical modeling to study drying characteristics of apples and potatoes. In: InternationalConference on Chemical, Environment& Biological Sciences (CEBS-2014), Kuala Lumpur, Malaysia.
[215]
Slatnar A., Klancar U., Stampar F., Veberic R., 2011. Effect of drying of figs (Ficuscarica L.) on the contents of sugars, organic acids, and phenolic compounds. J. Agric. Food Chem. 59, 1-7. https://doi.org/10.1021/jf202707y.
[216]
Srikiatden J., Roberts J.S., 2007. Moisture transfer in solid food materials: a review of mechanisms, models, and measurements. Int. J. Food Prop. 10 (4), 739-777.
[217]
Srinivasan G., Muthukumar P., 2021a. A review on solar greenhouse dryer: design,thermal modelling, energy, economic and environmental aspects. Sol. Energy. https://doi.org/10.1016/j.solener.2021.04.058.
[218]
Srinivasan G., Muthukumar P., 2021b. A review on solar greenhouse dryer: design, thermal modelling, energy, economic and environmental aspects. Sol. Energy 229, 3-21 (2021).
[219]
Starovoitov V.I., Starovoitova O.A., Manokhina A.А., Balabanov V.I., 2023. The influence of freeze drying on the quality indicators of potato tubers. E3S Web of Conferences 392. https://doi.org/10.1051/e3sconf/202339202031.
[220]
Struckmann F., 2008. Analysis of a Flat-Plate Solar Collector. Project Report 2008 MVK160 Heat and Mass Transport May 08, 2008, Lund, Sweden. Suherman, S., Susanto, E.E., Zardani, A.W., Dewi, N.H.R., Hadiyanto, H., 2020.
[221]
Energy-exergy analysis and mathematical modelling of cassava starch drying using a hybrid solar dryer. Cogent Eng. 7 (1), 1771819. https://doi.org/10.1080/23311916.2020.177181.
[222]
Surendhar A., Sivasubramanian V., Vidhyeswari D., Deepanraj B., 2018. Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwavedried turmeric slices. J. Therm. Anal. Calorim. 136, 185-197. https://doi.org/10.1007/s10973-018-7791-9.
[223]
Tarek K.A, Salem A.E., Yanlin Z., Gaballah E.S., Makram S.O., Fan Q., 2021. Energy and exergy analysis of carbon nanotubes-based solar dryer. J. Energy Storage 39 (2021), 102623. https://doi.org/10.1016/j.est.2021.102623.
[224]
Teguia M.S., Chabane F., Arif A., Aouissi Z., 2024. Drying of the orange slices, and energetic analysis of the drying chamber alimented by a solar air collector for extraction of the water from anorange slice. Sci. Afr. 24, e02149. https://doi.org/10.1016/j.sciaf.2024.e02149.
[225]
Teussingka T., Simo-Tagne M., Njankouo J.M., Betchewe G., Ndukwu M.C., Nwakuba N.R., Bekkioui N., Zoulalian A., 2023. An experimental and theoretical analysis of the dynamic response of solar drying in natural convection under the rainy month of Maroua (Cameroon) of three tropical wood species. Wood Mater. Sci. Eng. https://doi.org/10.1080/17480272.2023.2178030.
[226]
Tiwari A., 2016. A review on solar drying of agricultural produce. J. Food Process. Technol. 7 (9), 1000623. https://doi.org/10.4172/2157-7110.1000623.
[227]
Tiwari G.N., Amita G., Ravi G., 2002. Evaluation of solar fraction on north partition wall for various shapes of solarium by Auto-CAD. Energy Build. 1506, 1-8.
[228]
Tunde-Akintunde T.Y., 2011. Mathematical modeling of sun and solar drying of chilli pepper. Renew. Energy 36, 2139-2145. https://doi.org/10.1016/j.renene.2011.01.017.
[229]
Tyagi V.V., Pathak S.K., Chopra K., Saxena A., Kalidasan B., Dwivedi A., Goel V., Sharma R.K., Agrawal R., Kandil A.A., Awad M.M., Kothari R., Pandey A.K., 2024. Sustainable growth of solar drying technologies: advancing the use of thermal energy storage for domestic and industrial applications. J. Energy Storage 99 (2024), 113320.
[230]
Usama M., Ali Z., Ndukwu M.C., Sathyamurthy R., 2023. The energy, emissions, and drying kinetics of three-stage solar, microwave and desiccant absorption drying of potato slices. Renew. Energy 219, 119509 (2023).
[231]
Vanek F.M., Albright L.D., 2008. Energy Systems Engineering. McGraw-Hill, New York.
[232]
Verma S.K., Gupta N.K., Rakshit D., 2020. A comprehensive analysis on advances in application of solar collectors considering design, process and working fluid parameters for solar to thermal conversion. Sol. Energy 208, 1114-1150.
[233]
Visa I., Moldovan M., Duta A., 2019. Novel triangle flat plate solar thermal collector for facades integration. Renew. Energy 143, 252-262.
[234]
Xiong Q., Altnji S., Tayebi T., Izadi M., Hajjar A., Sunden B., Li L.K.B., 2021. A comprehensive review on the application of hybrid nanofluids in solar energy collectors. Sustain. Energy Technol. Assess. 47 (2021), 101341.
[235]
Yahya M., Fudholi A., Hafizh H., Sopian K., 2016. Comparison of the solar dryer and solar-assisted heat pump dryer for cassava. Sol. Energy 136, 606e613.
[236]
Yahya M., Sopian K., Daud W.R.W., Othman M.Y., Yatim B., et al., 2008. Experimental and theoretical þperformance of a solar assisted dehumidification system for Centella asiatica L. In: Proceedings of the 7th WSEAS, International Conference on System Science and Simulation in Engineering ( ICOSSSE '08), pp. 329-334. Venice, Italy, November 21-23.
[237]
Yamanlou Y., Zomorodian A., 2010. Applying CFD for designing a new fruit cabinet dryer. J. Food Eng. 101, 8. -1.
[238]
Yang K.S., Hamid K., Wu S.K., Sajjad U., Wang C.C., 2021. Experimental analysis of a heat pump dryer with an external desiccant wheel dryer. Processes 9 (7), 1216. https://doi.org/10.3390/pr9071216.
[239]
Yao Y., Yoong X., Manickam S., Lester E., Wu T., Pang C.H.,2022. A review study on recent advances in solar drying: mechanisms, challenges, and perspectives. Sol. Energy Mater. Sol. Cells 248 (2022), 111979.
[240]
Yassen T.A., Al-Kayiem H.H., 2016. Experimental investigation and evaluation of hybrid solar/thermal dryer combined with supplementary recovery dryer. Sol. Energy 134, 284-293.
[241]
Yüzgeç U., Türker M., Becerikli Y., 2004. Modelling of batch fluidized bed drying of baker yeast for cylindrical pellets. In: Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey. https://doi.org/10.1109/ICMECH.2004.1364403.
[242]
Zambolin E., Del Col D., 2010. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84, 1382-1396. https://doi.org/10.1016/j.solener.2010.04.020.
[243]
Zhao X., Aili A., Zhao D., Xu D., Yin X., Yang R., 2022. Dynamic glazing withswitchable solar reflectance for radiative cooling and solar heating. Cell Rep. Phys. Sci. 3, 100853. https://doi.org/10.1016/j.xcrp.2022.100853.
[244]
Zhu J., Zhang X., Hua W., Ji J., Lv X., 2023. Current status and development of research on phase change materials in agricultural greenhouses: a review. J. Energy Storage 66 (2023), 107104.
[245]
Zoukit A., El Ferouali H., Salhi I., Doubabi S., Abdenouri N., 2018. Mathematical modeling of an innovative hybrid solar-gas dryer. J. Energy Syst. 2 (4), 260-276.
[246]
Zriba A., Guellouz M.S., Jemni A., 2021. Design and optimization of a tomato drying solar cell. J. Braz. Soc. Mech. Sci. Eng. https://doi.org/10.1007/s40430-021-03010-8.
PDF(7448 KB)

Accesses

Citations

Detail

Sections
Recommended

/