Potentials and effects of electricity cogeneration via ORC integration in small-scale biomass district heating system

Truong Nguyen , Leteng Lin

Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (1) : 100113

PDF (4422KB)
Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (1) : 100113 DOI: 10.1016/j.gerr.2024.100113
Research Articles
research-article

Potentials and effects of electricity cogeneration via ORC integration in small-scale biomass district heating system

Author information +
History +
PDF (4422KB)

Abstract

This study explores the potential and impact of electricity cogeneration using Organic Rankine Cycle (ORC) integrated with small-scale biomass boilers within district heating systems. An analysis is conducted on a 3 MWth biomass-fired district heating plant in southern Sweden. Process monitoring data, collected over a one-year period from the plant, serves as the basis for simulation and analysis. The study examines operational changes and fuel usage at a local level, together with an extension to a regional scale considering both short-term and long-term energy system implications. The results show that integrating a 200 kWe ORC unit with the existing boiler having a flue gas condenser is cost-optimal and could cogenerate approximately 1.1 GWh electricity annually, with a levelized electricity cost of €64.4 per MWh. This is equivalent to a system power-to-heat ratio of 7.5%. From a broader energy system perspective, this efficient integration could potentially reduce CO2 emissions by 234-454 tons per year when the saved energy locally is used to replace fossil fuels in the energy system, depending on how biomass is utilized and what type of fossil fuels are replaced. Increasing installed capacity of ORC unit to maximize electricity co-generation could result in a carbon abatement cost ranging from €204 to €79 per ton CO2. This cost fluctuates depending on the installed capacity, operation of the ORC units, and prevailing electricity prices. The study highlights the trade-off between financial gains and CO2 emission reductions, underscoring the complex decision-making involved in energy system optimization.

Keywords

Biomass conversion / Small-scale boiler / Organic rankine cycle / District heating system / Primary energy use / Electricity cogeneration / GHG emissions

Cite this article

Download citation ▾
Truong Nguyen, Leteng Lin. Potentials and effects of electricity cogeneration via ORC integration in small-scale biomass district heating system. Green Energy and Resources, 2025, 3(1): 100113 DOI:10.1016/j.gerr.2024.100113

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Truong Nguyen: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Leteng Lin: Writing - review & editing, Writing - original draft, Visualization, Formal analysis, Data curation.

Disclaimer

The content of this publication is the sole responsibility of its authors and can under no circumstances be regarded as reflecting the position of the European Union, the Managing Authority or the Joint Secretariat of the Interreg South Baltic Programme 2021-2027.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank ITK Envifront AB, particularly Fredrik Albertson and Staffan Jansson, for their input on scrubber operation data. We also appreciate the support from Lessebo Fjärrvärme, with special thanks to Mike Lundström and Mikael Fredh for granting us access to the system and providing valuable process data.

The work of Dr. Leteng Lin was partially financed and supported by the Swedish Knowledge Foundation (grant number 20190090) and the DecarbonDHS project (grant number of STHB.02.01-IP.01-0009/23) co-financed from the Interreg South Baltic Programme 2021–2027 through the European Regional Development Fund.

References

[1]

Abbas, W.K.A., Baumhögger, E., Vrabec, J., 2022. Experimental investigation of organic Rankine cycle performance using alkanes or hexamethyldisiloxane as a working fluid. Energy Convers. Manag. X 15, 100244.

[2]

Againity, 2021. Cases of installation in Sweden. Presentations about existing instalations, organized by Againity AB. Ingelstagatan 1. SE-602 41 Norrköping, Sweden.

[3]

Ali, F., Dawood, A., Hussain, A., Alnasir, M.H., Khan, M.A., Butt, T.M., Janjua, N.K., Hamid, A., 2024. Fueling the future: biomass applications for green and sustainable energy. Disc. Sustain. 5 (1), 156.

[4]

Arasto, A., Chiaramonti, D., Kiviluoma, J., Heuvel, E.v. d., Waldheim, L., Maniatis, K., Sipilä K., 2017. Bioenergy’s role in balancing the electricity grid and providing storage options - an EU perspective. IEA Bioenergy: Task 41P6: 2017: 01. Webaccessed at: https://www.ieabioenergy.com/wp-content/uploads/2017/02/IEA-Bioenergy-bio-in-balancing-grid_master-FINAL.pdf.

[5]

Bacovsky, D., Dißauer, C., Drosg, B., Kuba, M., Matschegg, D., Schmidl, C., Carlon, E., Schipfer, F., Kraxner, F., 2022. How Bioenergy Contributes to a Sustainable Future, IEA Bioenergy Report 2023. Web-accessed at: https://www.ieabioenergyreview.org/wp-content/uploads/2022/12/IEA_BIOENERGY_REPORT.pdf.

[6]

Brange, L., Englund, J., Lauenburg, P., 2016. Prosumers in district heating networks - a Swedish case study. Appl. Energy 164, 492-500.

[7]

Brown, S., Jones, D., 2024. European Electricity Review 2024 - Europe’s electricity transition takes crucial strides forward. Ember. The Fisheries, 1 Mentmore Terrace, London Fields. E 8 3PN. Web-assecced at: https://ember-climate.org/insights/research/european-electricity-review-2024/#supporting-material.

[8]

Connolly, D., Lund, H., Mathiesen, B.V., Werner, S., Möller, B., Persson, U., Boermans, T., Trier, D., Østergaard, P.A., Nielsen, S., 2014. Heat Roadmap Europe: combining district heating with heat savings to decarbonise the EU energy system. Energy Pol. 65 (0), 475-489.

[9]

Coppieters, T., Blondeau, J., 2019. Techno-economic design of flue gas condensers for medium-scale biomass combustion plants: impact of heat demand and return temperature variations. Energies 12 (12), 2337.

[10]

Cornette, J.F.P., Coppieters, T., Lepaumier, H., Blondeau, J., Bram, S., 2021. Particulate matter emission reduction in small- and medium-scale biomass boilers equipped with flue gas condensers: field measurements. Biomass Bioenergy 148, 106056.

[11]

Cowie, A.L., Berndes, G., Bentsen, N.S., Brand-ao, M., Cherubini, F., Egnell, G., George, B., Gustavsson, L., Hanewinkel, M., Harris, Z.M., Johnsson, F., Junginger, M., Kline, K.L., Koponen, K., Koppejan, J., Kraxner, F., Lamers, P., Majer, S., Marland, E., Nabuurs, G.-J., Pelkmans, L., Sathre, R., Schaub, M., Smith Jr., C.T., Soimakallio, S., Van Der Hilst, F., Woods, J., Ximenes, F.A., 2021. Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy 13 (8), 1210-1231.

[12]

Danish Energy Agency, 2024a. Data sheet for Electricity and district heat production - updated February 2024. Danish Energy Agen. Web-accessed at: https://ens.dk/sites/ens.dk/files/Analyser/technology_data_forélánd_dh.xlsx.

[13]

Danish Energy Agency, 2024b. Generation of Electricity and District heating - technology descriptions and projections for long-term energy system planning. Danish Energy Agen. Web-accessed at: https://ens.dk/sites/ens.dk/files/Analyser/technology_dataćatalogue_forélánd_dh.pdf.

[14]

Energimarknadsinspektionen, 2022. Statistics of Technical data - district heating (in Swedish:statistik - Produktion per prisområde). Swedish Energy Mark. Inspect. (Ei). Web-accessed at: https://ei.se/om-oss/statistik-och-oppna-data/tekniska-uppgifter—fjarrvarme.

[15]

Energinet, 2024. Elspot Prices - day ahead spotprices in Denmark (DK) and neighbouring countries. Energinet. Web-accessed at: www.energidataservice.dk.

[16]

European, Commission, 2015. Guide to Cost-Benefit Analysis of Investment Projects: Economic Appraisal Tool for Cohesion Policy 2014- 2020. Publications Office of the European Union. https://doi.org/10.2776/9751.ISBN978-92-79-34796-2.

[17]

Fossil, Free Sweden, 2020. Roadmap for fossil free competitiveness. Summaries 2018-2020, Fossil Free Sweden. Web-accessed at: https://fossilfrittsverige.se/wp-content/uploads/2020/12/Sammanfattning_Webb_ENG_2020.pdf.

[18]

Fredh, M., 2024. Operation data of existing district heat production units in Kosta, Lesssebo Municipality, Sweden. Personal communication with Mikael Fredh (2022- 2024) from Lessebo Fjärrvärme (Sweden).

[19]

Gadd, H., Werner, S., 2014. Achieving low return temperatures from district heating substations. Appl. Energy 136, 59-67.

[20]

Gayen, D., Chatterjee, R., Roy, S., 2024. A review on environmental impacts of renewable energy for sustainable development. Int. J. Environ. Sci. Technol. 21 (5), 5285-5310.

[21]

Guelpa, E., Capone, M., Sciacovelli, A., Vasset, N., Baviere, R., Verda, V., 2023. Reduction of supply temperature in existing district heating: a review of strategies and implementations. Energy 262, 125363.

[22]

Hansen, C.H., Gudmundsson, O., Detlefsen, N., 2019. Cost efficiency of district heating for low energy buildings of the future. Energy 177, 77-86.

[23]

Holmberg, P., Tangerås, T.P., 2018. The Swedish ElectricityMarket - Today and in the Future.

[24]

IEA, 2018. World Energy Outlook 2018. International Energy Agency.

[25]

IEA, 2021. Energy Technology Perspectives 2020. International Energy Agency. Webaccessed at: https://iea.blob.core.windows.net/assets/7f8aed40-89af-4348-be19-c8a67df0b9ea/Energy_Technology_Perspectives_2020_PDF.pdf.

[26]

IEA, 2022. World Energy Outlook 2022. International Energy Agency. Web-accessed at: https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf.

[27]

Jiménez-García, J.C., Ruiz, A., Pacheco-Reyes, A., Rivera, W., 2023. A comprehensive review of organic rankine cycles. Processes 11. https://doi.org/10.3390/pr11071982.

[28]

Johansson, W., Li, J., Lin, L., 2023. Module-based simulation model for prediction of convective and condensational heat recovery in a centrifugal wet scrubber. Appl. Therm. Eng. 219, 119454.

[29]

Lund, H., Mathiesen, B., Christensen, P., Schmidt, J., 2010. Energy systemanalysis ofmarginal electricity supply in consequential LCA. Int. J. Life Cycle Assess. 15 (3), 260-271.

[30]

Lund, H., Østergaard, P.A., Chang, M., Werner, S., Svendsen, S., Sorknæs, P., Thorsen, J.E., Hvelplund, F., Mortensen, B.O.G., Mathiesen, B.V., Bojesen, C., Duic, N., Zhang, X., Möller, B., 2018. The status of 4th generation district heating: research and results. Energy 164, 147-159.

[31]

Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J.E., Hvelplund, F., Mathiesen, B.V., 2014. 4th Generation District Heating (4GDH): integrating smart thermal grids into future sustainable energy systems. Energy 68 (0), 1-11.

[32]

Mehedi, T.H., Gemechu, E., Davis, M., Kumar, A., 2021. A framework to identify marginal electricity production technologies for consequential life cycle assessment: a case study of the electricity sector. Sustain. Energy Technol. Assessments 47, 101450.

[33]

Miljönteknik, A.B., 2024. Certified Copy of Measuring Report for Biomass-Fired Boiler Operated by Lessebo Fjärrvärme AB in Kosta. Finn Miljönteknik AB, Sweden. Report number: 240323-01.

[34]

Mota-Babiloni, A., Amat-Albuixech, M., Molés-Ribera, F., Navarro-Esbrí J., 2023. Techno-economic feasibility of organic rankine cycles (ORC) for waste heat recovery. Heat Energy Recov. Industr. Proc. Waste. 105-137. D. Borge-Diez and E. Rosales- Asensio. Cham, Springer International Publishing.

[35]

Nguyen, T., Danielski, I., Ahlgren, B., Nair, G., 2024. Effects of solar thermal energy on district heating systems: the case of parabolic trough collectors in a high-latitude region. Sustain. Energy Fuels 8 (17), 3964-3975.

[36]

Olkkonen, V., Syri, S., 2016. Spatial and temporal variations of marginal electricity generation: the case of the Finnish, Nordic, and European energy systems up to 2030. J. Clean. Prod. 126, 515-525.

[37]

Oluleye, G., Jobson, M., Smith, R., Perry, S.J., 2016. Evaluating the potential of process sites for waste heat recovery. Appl. Energy 161, 627-646.

[38]

Ommen, T., Markussen, W.B., Elmegaard, B., 2016. Lowering district heating temperatures - impact to system performance in current and future Danish energy scenarios. Energy 94 (Suppl. C), 273-291.

[39]

Pethurajan, V., Sivan, S., Joy, G.C., 2018. Issues, comparisons, turbine selections and applications - an overview in organic Rankine cycle. Energy Convers. Manag. 166, 474-488.

[40]

Pirouzfar, V., Saleh, S., Su, C.-H., 2024. Working fluid selection of organic Rankine cycle with considering the technical, economic and energy analysis. J. Therm. Anal. Calorim. 149 (17), 9819-9829.

[41]

SCB, 2024. Statistics of Exchange Rates, Monthly Averages, Statistics Sweden (SCB). Webaccessed at: https://www.scb.se/en/finding-statistics/statistics-by-subject-area/other/general-statistics/sveriges-ekonomi/pong/tables-and-graphs/exchange-ratesmonthly-averages/.

[42]

Swedish Energy Agency, 2022. Energy in Sweden 2022 - Facts and Figures, Energimyndigheten, Box 310, 631 04 Eskilstuna. Sweden. Web-accessed at: http://www.energimyndigheten.se. (Accessed 15 September 2021).

[43]

Swedish Energy Agency, 2023. Energy in Sweden - Facts and Figures 2023, Energimyndigheten, Box 310, 631 04 Eskilstuna. Sweden. Web-accessed at: http://www.energimyndigheten.se.

[44]

Swedish Energy Agency, 2024. Wood Fuel, Peat and Waste Prices (In Swedish: Trädbränsle-, Torv- Och Avfallspriser), Swedish Energy Agency. Sweden. Web accessed at. https://www.energimyndigheten.se/statistik/den-officiella-statistiken/statistikprodukter/tradbransle-och-torvpriser/.

[45]

Truong, N.L., Gustavsson, L., 2014. Minimum-cost district heat production systems of different sizes under different environmental and social cost scenarios. Appl. Energy 136 (0), 881-893.

[46]

Wren, J., Najafabadi, H.N., Johansson, M., Thyresson, J.H., Linde, M., Cruz, I., 2020. Performance and potential of small-scale ORC systems. Elforsk Rapport 2020 717. ELFORSK. Web-accessed at: https://energiforsk.se/media/29068/performance-andpotential-of-small-scale-orc-systems-energiforskrapport-2020-717.pdf. (Accessed 4 January 2022).

AI Summary AI Mindmap
PDF (4422KB)

237

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/