Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma

Zhihao Zeng , Yujiao Li , Yunfei Ma , Xiaoqing Lin , Xiangbo Zou , Hao Zhang , Xiaodong Li , Qingyang Lin , Ming-Liang Qu , Zengyi Ma , Angjian Wu

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (4) : 100102

PDF (2427KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (4) : 100102 DOI: 10.1016/j.gerr.2024.100102
Research Articles
research-article

Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma

Author information +
History +
PDF (2427KB)

Abstract

The increasing utilization of CO2 for synthesizing high-value fuels or essential chemicals is a potentially effective approach to mitigating global warming and climate change. Compared to thermal catalytic CO2 conversion under harsh operating conditions (400∼500°C, 10 MPa), non-thermal plasma can overcome kinetic barriers and trigger reactions beyond thermal equilibrium at ambient temperature and pressure. In this study, the effects of operating conditions (discharge frequency, input power, and gas flow rate) and geometrical parameters (discharge length, discharge gap, and dielectric materials) have been extensively analyzed using typical cylindrical dielectric barrier discharge (DBD) plasma. The discharge characteristics changed by operating conditions (including waveforms of applied voltage and current) are compared, indicating higher applied voltage and lower gas flow rate can strengthen the filamentary discharges. The results demonstrate CO2 conversion rate increases with the increase of applied voltage and the decrease of CO2/H2 ratio, achieving its maximum value of 43.0% at 20 mL/min. The highest energy efficiency of 3771.9 μg/kJ for CO generation is obtained at the applied voltage of 5.5 kV and gas flow rate of 40 mL/min, respectively. Besides, the structure of plasma reactor also impacts the performance of CO2 conversion. On the one hand, the discharge gap has a significant role in the variation of CO2 conversion and product selectivity, which is attributed to the electric field density and corresponding electron-induced reaction. On the other hand, the circulating water-cooling jacket was used to find out the influence of reaction temperature, which switched the product from CO to CH4. This work will pave the way for a sustainable alternative towards future CO2 conversion and utilization.

Keywords

CO2 hydrogenation / Dielectric barrier discharge (DBD) plasma / Nonthermal equilibrium / CO2 utilization / Ambient conditions

Cite this article

Download citation ▾
Zhihao Zeng, Yujiao Li, Yunfei Ma, Xiaoqing Lin, Xiangbo Zou, Hao Zhang, Xiaodong Li, Qingyang Lin, Ming-Liang Qu, Zengyi Ma, Angjian Wu. Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma. Green Energy and Resources, 2024, 2(4): 100102 DOI:10.1016/j.gerr.2024.100102

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhihao Zeng: Formal analysis, Investigation, Methodology, Writing - original draft. Yujiao Li: Data curation, Formal analysis, Investigation, Supervision, Writing - review & editing. Yunfei Ma: Investigation, Methodology. Xiaoqing Lin: Supervision. Xiangbo Zou: Methodology. Hao Zhang: Validation. Xiaodong Li: Supervision. Qingyang Lin: Supervision. Ming-Liang Qu: Investigation. Angjian Wu: Project administration, Resources, Supervision, Validation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (2022C03016) and the Fundamental Research Funds for the Central Universities (2022ZFJH04).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gerr.2024.100102.

References

[1]

Aerts, R., Somers, W., Bogaerts, A., 2015. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study[J/OL]. ChemSusChem 8 (4), 702-716. https://doi.org/10.1002/cssc.201402818.

[2]

Ahmad, F., Lovell, E.C., Masood, H., et al., 2020. Low-temperature CO2 methanation:synergistic effects in plasma-Ni hybrid catalytic system[J/OL]. ACS Sustain. Chem. Eng. 8 (4), 1888-1898. https://doi.org/10.1021/acssuschemeng.9b06180.

[3]

Álvarez, A., Bansode, A., Urakawa, A., et al., 2017. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J/OL]. Chem. Rev. 117 (14), 9804-9838. https://doi.org/10.1021/acs.chemrev.6b00816.

[4]

Brandenburg, R., Schiorlin, M., Schmidt, M., et al., 2023. Plane Parallel Barrier Discharges for Carbon Dioxide Splitting: influence of Discharge Arrangement on Carbon Monoxide Formation[J/OL]. Plasma 6 (1), 162-180. https://doi.org/10.3390/plasma6010013.

[5]

Chaudhary, R., Van Rooij, G., Li, S., et al., 2020. Low-temperature, atmospheric pressure reverse water-gas shift reaction in dielectric barrier plasma discharge, with outlook to use in relevant industrial processes[J/OL]. Chem. Eng. Sci. 225, 115803. https://doi.org/10.1016/j.ces.2020.115803.

[6]

Chen, H., Mu, Y., Xu, S., et al., 2020. Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry[J/OL]. Chin. J. Chem. Eng. 28 (8), 2010-2021. https://doi.org/10.1016/j.cjche.2020.05.027.

[7]

Chen, Q., Meng, S., Liu, R., et al., 2024. Plasma-catalytic CO2 hydrogenation to methanol over CuO-MgO/Beta catalyst with high selectivity[J/OL]. Appl. Catal. B Environ. 342, 123422. https://doi.org/10.1016/j.apcatb.2023.123422.

[8]

De, Bie, C., Van, Dijk, J., Bogaerts, A., 2016. CO2 Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed[J/OL]. J. Phys. Chem. C 120 (44), 25210-25224. https://doi.org/10.1021/acs.jpcc.6b07639.

[9]

Duan, X., Hu, Z., Li, Y., et al., 2015a. Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor[J/OL]. AIChE J. 61 (3), 898-903. https://doi.org/10.1002/aic.14682.

[10]

Duan, X., Li, Y., Ge, W., et al., 2015b. Degradation of CO2 through dielectric barrier discharge microplasma[J/OL]. Greenhouse Gases: Sci. Technol. 5 (2), 131-140. https://doi.org/10.1002/ghg.1425.

[11]

Eliasson, B., Kogelschatz, U., Xue, B., et al., 1998. Hydrogenation of Carbon Dioxide to Methanol with a Discharge-Activated Catalyst[J/OL]. Ind. Eng. Chem. Res. 37 (8), 3350-3357. https://doi.org/10.1021/ie9709401.

[12]

George, A., Shen, B., Craven, M., et al., 2021. A Review of Non-Thermal Plasma Technology:A novel solution for CO2 conversion and utilization[J/OL]. Renew. Sustain. Energy Rev. 135, 109702. https://doi.org/10.1016/j.rser.2020.109702.

[13]

Huang, W., Yue, W., Dong, Y., et al., 2023. Field parameters investigation of CO2 splitting in atmospheric DBD plasma by multi-physics coupling simulation and emission spectroscopy measurements[J/OL]. Fuel 353, 129236. https://doi.org/10.1016/j.fuel.2023.129236.

[14]

IEA, 2020. CCUS in Clean Energy transitions[R]. IEA, Paris.

[15]

Kanuri, S., Dinda, S., Singh, S.A., et al., 2024. Microrod networks CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2:Synthesis, characterization, and performance demonstration[J/OL]. Mater. Today Chem. 36, 101959. https://doi.org/10.1016/j.mtchem.2024.101959.

[16]

Karakaya, C., Parks, J., 2023. Thermochemical processes for CO2 hydrogenation to fuels and chemicals:Challenges and opportunities[J/OL]. Applications in Energy and Combustion Science 15, 100171. https://doi.org/10.1016/j.jaecs.2023.100171.

[17]

Kondratenko, E.V., Mul, G., Baltrusaitis, J., et al., 2013. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J/OL]. Energy Environ. Sci. 6 (11), 3112. https://doi.org/10.1039/c3ee41272e.

[18]

Li, Y., Yu, H., Dai, J., et al., 2023. CH4 and CO2 conversion over boron nitride-supported Ni catalysts with BO defects in DBD plasma[J/OL]. Fuel Process. Technol. 242, 107655. https://doi.org/10.1016/j.fuproc.2023.107655.

[19]

Mahdikia, H., Brüser, V., Schiorlin, M., et al., 2023. CO2 Dissociation in Barrier Corona Discharges:Effect of Elevated Pressures in CO2/Ar Mixtures[J/OL]. Plasma Chem. Plasma Process. 43 (6), 2035-2063. https://doi.org/10.1007/s11090-023-10411-1.

[20]

Mei, D., Zhu, X., Wu, C., et al., 2016. Plasma-photocatalytic conversion of CO2 at low temperatures:Understanding the synergistic effect of plasma-catalysis[J/OL]. Appl. Catal. B Environ. 182, 525-532. https://doi.org/10.1016/j.apcatb.2015.09.052.

[21]

Modak, A., Bhanja, P., Dutta, S., et al., 2020. Catalytic reduction of CO2 into fuels and fine chemicals[J/OL]. Green Chem. 22 (13), 4002-4033. https://doi.org/10.1039/D0GC01092H.

[22]

Olah, G.A., Goeppert, A., Prakash, G.K.S., 2009. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons[J/OL]. J. Org. Chem. 74 (2), 487-498. https://doi.org/10.1021/jo801260f.

[23]

Ozkan, A., Bogaerts, A., Reniers, F., 2017. Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge[J/OL]. J. Phys. Appl. Phys. 50 (8), 084004. https://doi.org/10.1088/1361-6463/aa562c.

[24]

Paulussen, S., Verheyde, B., Tu, X., et al., 2010. Conversion of carbon dioxide to valueadded chemicals in atmospheric pressure dielectric barrier discharges[J/OL]. Plasma Sources Sci. Technol. 19 (3), 034015. https://doi.org/10.1088/0963-0252/19/3/034015.

[25]

Peeters, F.J., Van de Sanden, M.C., 2014 Dec 9. The influence of partial surface discharging on the electrical characterization of DBDs. Plasma Sources Sci. Technol. 24 (1), 015016.

[26]

Ray, D., Chawdhury, P., Bhargavi, K.V.S.S., et al., 2021. Ni and Cu oxide supported γ-Al2O3 packed DBD plasma reactor for CO2 activation[J/OL]. J. CO2 Util. 44, 101400. https://doi.org/10.1016/j.jcou.2020.101400.

[27]

Schwiderowski, P., Ruland, H., Muhler, M., 2022. Current developments in CO2 hydrogenation towards methanol:A review related to industrial application[J/OL]. Curr. Opin. Green Sustainable Chem. 38, 100688. https://doi.org/10.1016/j.cogsc.2022.100688.

[28]

Shin, H., Hansen, K.U., Jiao, F., 2021. Techno-economic assessment of low-temperature carbon dioxide electrolysis[J/OL]. Nat. Sustain. 4 (10), 911-919. https://doi.org/10.1038/s41893-021-00739-x.

[29]

Tada, S., Kinoshita, H., Ochiai, N., et al., 2021. Search for solid acid catalysts aiming at the development of bifunctional tandem catalysts for the one-pass synthesis of lower olefins via CO2 hydrogenation[J/OL]. Int. J. Hydrogen Energy 46 (74), 36721-36730. https://doi.org/10.1016/j.ijhydene.2021.09.002.

[30]

Ullah, N., Su, M., Yang, Y., et al., 2023. Enhanced CO2 hydrogenation to light hydrocarbons on Ni-based catalyst by DBD plasma[J/OL]. Int. J. Hydrogen Energy 48 (57), 21735-21751. https://doi.org/10.1016/j.ijhydene.2023.03.006.

[31]

Wanten, B., Vertongen, R., Meyer, R.D., et al., 2023. Plasma-based CO2 conversion: How to correctly analyze the performance?[J/OL]. J. Energy Chem. 86 (11), 180. https://doi.org/10.1016/j.jechem.2023.07.005.

[32]

Wei, Y.M., Kang, J.N., Liu, L.C., et al., 2021. A proposed global layout of carbon capture and storage in line with a 2°C climate target[J/OL]. Nat. Clim. Change 11 (2), 112-118. https://doi.org/10.1038/s41558-020-00960-0.

[33]

Wu, H., Xiong, S., Liu, C jun, 2023. Preparation of In2O3/ZrO2 catalyst via DBD plasma decomposition of Zr(OH)4 for CO2 hydrogenation to methanol[J/OL]. Catal. Today 423, 114024. https://doi.org/10.1016/j.cattod.2023.02.001.

[34]

Zeng, Y., Tu, X., 2017. Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor:effect of argon addition[J/OL]. J. Phys. Appl. Phys. 50 (18), 184004. https://doi.org/10.1088/1361-6463/aa64bb.

[35]

Zhai, M., Huang, G., Liu, H., et al., 2020. Three-perspective energy-carbon nexus analysis for developing China's policies of CO2-emission mitigation[J/OL]. Sci. Total Environ. 705, 135857. https://doi.org/10.1016/j.scitotenv.2019.135857.

[36]

Zhang, Y., Wang, B., Ji, Z., et al., 2023. Plasma-catalytic CO2 methanation over NiFen/ (Mg, Al)Ox catalysts:Catalyst development and process optimisation[J/OL]. Chem. Eng. J. 465, 142855. https://doi.org/10.1016/j.cej.2023.142855.

AI Summary AI Mindmap
PDF (2427KB)

205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/