Advancements in purification and holistic utilization of industrial by-product hydrogen: Progress, challenges, and prospects

Xinyi Zhang , Xuemiao Qian , Chengbang Xiao , Xu Yin , Xin Wang , Zhe Wang , Hao Yu , Zongying Han , Leteng Lin

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (4) : 100098

PDF (5418KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (4) : 100098 DOI: 10.1016/j.gerr.2024.100098
Reviews
research-article

Advancements in purification and holistic utilization of industrial by-product hydrogen: Progress, challenges, and prospects

Author information +
History +
PDF (5418KB)

Abstract

In the wake of a global shift towards sustainable energy and heightened environmental stewardship, hydrogen energy stands out as a clean and efficient alternative, drawing significant interest for its potential. Industrial by-product hydrogen (IBPH), a key source in the burgeoning hydrogen economy, is poised for growth during the early to mid-stages of hydrogen economy, but currently grapples with substantial wastage and suboptimal utilization due to technological barriers and insufficient attention. A critical examination of the purification and utilization technologies for IBPH is thus imperative, offering practitioners in the hydrogen domain the insights necessary for a more strategic and efficacious harnessing of this resource. The present review delivers an exhaustive survey of cutting-edge separation and purification techniques tailored for IBPH. Additionally, it encapsulates the latest advancements in utilization technologies of IBPH across diverse sectors, presenting a methodical compendium of current innovations. The discourse extends to a probing analysis of the prevailing challenges and envisions the prospective landscape of the IBPH marketplace.

Keywords

Hydrogen economy / By-product hydrogen / Hydrogen purification / Hydrogen utilization

Cite this article

Download citation ▾
Xinyi Zhang, Xuemiao Qian, Chengbang Xiao, Xu Yin, Xin Wang, Zhe Wang, Hao Yu, Zongying Han, Leteng Lin. Advancements in purification and holistic utilization of industrial by-product hydrogen: Progress, challenges, and prospects. Green Energy and Resources, 2024, 2(4): 100098 DOI:10.1016/j.gerr.2024.100098

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xinyi Zhang: Writing - original draft, Visualization, Resources, Investigation. Xuemiao Qian: Writing - original draft, Visualization, Resources, Investigation. Chengbang Xiao: Writing - original draft, Visualization, Resources. Xu Yin: Visualization, Resources, Investigation. Xin Wang: Visualization, Resources, Investigation. Zhe Wang: Visualization, Resources, Investigation. Hao Yu: Writing - review & editing, Investigation. Zongying Han: Writing - review & editing, Writing - original draft, Visualization, Validation, Supervision, Project administration, Investigation, Funding acquisition, Conceptualization. Leteng Lin: Writing - review & editing, Validation, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52302281), Shandong Provincial Natural Science Foundation (Grant No. ZR2022MB060), Qingdao Natural Science Foundation (Grant No. 23-2-1-225-zyyd-jch), and National College Student Innovation and Entrepreneurship Training Program (Grant No. 202310424020).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gerr.2024.100098.

References

[1]

Aasadnia, M., Mehrpooya, M., Ghorbani, B., 2021. A novel integrated structure for hydrogen purification using the cryogenic method. J. Clean. Prod. 278, 123872. https://doi.org/10.1016/j.jclepro.2020.123872.

[2]

Agarwal, R., 2022. Transition to a hydrogen-based economy: possibilities and challenges. Sustainability 14 (23), 15975. https://doi.org/10.3390/su142315975.

[3]

Agrawal, R., Auvil, S.R., DiMartino, S.P., Choe, J.S., Hopkins, J.A., 1988. Membrane/ cryogenic hybrid processes for hydrogen purification. Gas Separ. Purif. 2 (1), 9-15. https://doi.org/10.1016/0950-4214(88)80036-7.

[4]

Agueda, V.I., et al., 2015. Adsorption and diffusion of H2, N2, CO, CH4 and CO2 in UTSA- 16 metal-organic framework extrudates. Chem. Eng. Sci. 124, 159-169. https://doi.org/10.1016/j.ces.2014.08.039.

[5]

Ajanovic, A., Sayer, M., Haas, R., 2022. The economics and the environmental benignity of different colors of hydrogen. Int. J. Hydrogen Energy 47 (57), 24136-24154. https://doi.org/10.1016/j.ijhydene.2022.02.094.

[6]

Amin, M., et al., 2023. Issues and challenges in hydrogen separation technologies. Energy Rep. 9, 894-911. https://doi.org/10.1016/j.egyr.2022.12.014.

[7]

Amjad, A.K., Mahmoudi, S.M.S., Yari, M., 2022. Utilizing coke oven gases as a fuel for a cogeneration system based on high temperature proton exchange membrane fuel cell; energy, exergy and economic assessment. Int. J. Hydrogen Energy 47 (62), 26091-26113. https://doi.org/10.1016/j.ijhydene.2022.03.261.

[8]

Artemov, V.I., Minko, K.B., Yan'kov, G.G., 2016. Numerical study of heat and mass transfer processes in a metal hydride reactor for hydrogen purification. Int. J. Hydrogen Energy 41 (23), 9762-9768. https://doi.org/10.1016/j.ijhydene.2016.01.124.

[9]

Awbery, J.H., 1942. CARL VON linde A pioneer of 'deep' refrigeration. Nature 149 (3788), 630-631. https://doi.org/10.1038/149630a0.

[10]

Bai, S., et al., 2021. Application of membrane separation and PSA coupling technology in hydrogen recovery in refineries. Nat. Gas. Chem. Ind. 46 (S1), 113-117. https://doi.org/10.3969/j.issn.1001-9219.2021.z1.018.

[11]

Baker, R.W., 2002. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41 (6), 1393-1411. https://doi.org/10.1021/ie0108088.

[12]

Ban, J., et al., 2023. Research progress and prospects on hydrogen damage in welds of hydrogen-blended natural gas pipelines. Processes 11 (11), 3180. https://doi.org/10.3390/pr11113180.

[13]

Banu, A.-M., Friedrich, D., Brandani, S., Düren, T., 2013. A multiscale study of MOFs as adsorbents in H2 PSA purification. Ind. Eng. Chem. Res. 52 (29), 9946-9957. https://doi.org/10.1021/ie4011035.

[14]

Barrett, S., 2017. Fuel cells power forward on the roads and for power generation. Renewable Energy Focus 18, 29-32. https://doi.org/10.1016/j.ref.2017.03.002.

[15]

Beloev, I., et al., 2024. Utilization of hydrogen-containing gas waste from deep oil refining at a hybrid power plant with a solid oxide fuel cell. Engineering Proceed. 60 (1), 5. https://doi.org/10.3390/engproc2024060005.

[16]

Bermúdez, J.M., Ferrera-Lorenzo, N., Luque, S., Arenillas, A., Menéndez, J.A., 2013. New process for producing methanol from coke oven gas by means of CO 2 reforming. Comparison with conventional process. Fuel Process. Technol. 115, 215-221. https://doi.org/10.1016/j.fuproc.2013.06.006.

[17]

Bernardo, P., Drioli, E., Golemme, G., 2009. Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48 (10), 4638-4663. https://doi.org/10.1021/ie8019032.

[18]

Borzone, E.M., Baruj, A., Meyer, G.O., 2017. Design and operation of a hydrogen purification prototype based on metallic hydrides. J. Alloys Compd. 695, 2190-2198. https://doi.org/10.1016/j.jallcom.2016.11.067.

[19]

Caillat, S., 2017. Burners in the steel industry: utilization of by-product combustion gases in reheating furnaces and annealing lines. Energy Proc. 120, 20-27. https://doi.org/10.1016/j.egypro.2017.07.152.

[20]

Cao, J., Qin, X., Geng, G., Zhang, W., Yu, B., 2021. Current status and prospects of hydrogen storage and transportation technology. Acta Petrolei Sinica ( Petroleum Processing Section) 37 (6), 1461-1478. https://doi.org/10.3969/j.issn.1001-8719.2021.06.026.

[21]

Chen, J., Ji, C., Bu, L., 2022. Research and application of hydrogen production technology from industrial by-product gas under the background of carbon neutrality. Chem. Ind. Eng. Prog. 41 (3), 1479-1486. https://doi.org/10.16085/j.issn.1000-6613.2021-2240.

[22]

Chen, J., et al., 2020. Application of refinery by-product hydrogen to produce hydrogen for fuel cell. Nat. Gas. Chem. Ind. 45 (4), 66-70. https://doi.org/10.3969/j.issn.1001-9219.2020.04.013.

[23]

Chen, T., Wang, W.G., Miao, H., Li, T.S., Xu, C., 2011a. Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas. J. Power Sources 196 (5), 2461-2468. https://doi.org/10.1016/j.jpowsour.2010.11.095.

[24]

Chen, W.-H., Lin, M.-R., Leu, T.-S., Du, S.-W., 2011b. An evaluation of hydrogen production from the perspective of using blast furnace gas and coke oven gas as feedstocks. Int. J. Hydrogen Energy 36 (18), 11727-11737. https://doi.org/10.1016/j.ijhydene.2011.06.049.

[25]

Chen, X., et al., 2021. Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends. Nat. Commun. 12 (1), 6140. https://doi.org/10.1038/s41467-021-26379-5.

[26]

Chen, Y., Ahn, H., 2023. Optimization strategy for enhancing the product recovery of a pressure swing adsorption through pressure equalization or Co-current depressurization: a case study of recovering hydrogen from methane. Ind. Eng. Chem. Res. 62 (12), 5286-5296. https://doi.org/10.1021/acs.iecr.2c04654.

[27]

Cheng, H., Yue, B., Wang, X., Lu, X., Ding, W., 2009. Hydrogen production from simulated hot coke oven gas by catalytic reforming over Ni/Mg(Al)O catalysts. J. Nat. Gas Chem. 18 (2), 225-231. https://doi.org/10.1016/s1003-9953(08)60104-8.

[28]

Chicano, J., Dion, C.T., Pasaogullari, U., Valla, J.A., 2021. Simulation of 12-bed vacuum pressure-swing adsorption for hydrogen separation from methanol-steam reforming off-gas. Int. J. Hydrogen Energy 46 (56), 28626-28640. https://doi.org/10.1016/j.ijhydene.2021.06.102.

[29]

Chin, C., Kamin, Z., Bahrun, M.H.V., Bono, A., 2023. The production of industrial-grade oxygen from air by pressure swing adsorption. Int. J. Chem. Eng. 2023 (1), 2308227. https://doi.org/10.1155/2023/2308227.

[30]

Choudhury, A., Chandra, H., Arora, A., 2013. Application of solid oxide fuel cell technology for power generation - a review. Renew. Sustain. Energy Rev. 20, 430-442. https://doi.org/10.1016/j.rser.2012.11.031.

[31]

Clark, D., et al., 2022. Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors. Science 376 (6591), 390-393. https://doi.org/10.1126/science.abj3951.

[32]

Dehdari, L., et al., 2022. Purification of hydrogen from natural gas/hydrogen pipeline mixtures. Sep. Purif. Technol. 282, 120094. https://doi.org/10.1016/j.seppur.2021.120094.

[33]

Dehghani, A., Bridjanian, H., Farshi, A., 2012. Selection separation method for hydrogen and light hydrocarbons gases from waste-gas streams of a petroleum refinery. Petrol. Sci. Technol. 30 (21), 2196-2207. https://doi.org/10.1080/10916466.2010.499408.

[34]

Deng, X., Wang, H., Huang, H., Ouyang, M., 2010. Hydrogen flow chart in China. Int. J. Hydrogen Energy 35 (13), 6475-6481. https://doi.org/10.1016/j.ijhydene.2010.03.051.

[35]

Divekar, S., et al., 2021. Recovery of hydrogen and carbon dioxide from hydrogen PSA tail gas by vacuum swing adsorption. Sep. Purif. Technol. 254, 117113. https://doi.org/10.1016/j.seppur.2020.117113.

[36]

Dragassi, M.-C., Royon, L., Redolfi, M., Ammar, S., 2023. Hydrogen storage as a key energy vector for car transportation: a tutorial review. Hydro 4 (4), 831-861. https://doi.org/10.3390/hydrogen4040051.

[37]

Duan, X., et al., 2023. Performance analysis and comparison of the spark ignition engine fuelled with industrial by-product hydrogen and gasoline. J. Clean. Prod. 424, 138899. https://doi.org/10.1016/j.jclepro.2023.138899.

[38]

Dunikov, D., Blinov, D., 2020. Extraction of hydrogen from a lean mixture with methane by metal hydride. Int. J. Hydrogen Energy 45 (16), 9914-9926. https://doi.org/10.1016/j.ijhydene.2020.01.201.

[39]

Dunikov, D., et al., 2016. Biohydrogen purification using metal hydride technologies. Int. J. Hydrogen Energy 41 (46), 21787-21794. https://doi.org/10.1016/j.ijhydene.2016.08.190.

[40]

Durmus, G.N.B., Colpan, C.O., Devrim, Y., 2021. A review on the development of the electrochemical hydrogen compressors. J. Power Sources 494, 229743. https://doi.org/10.1016/j.jpowsour.2021.229743.

[41]

Farrell, B., Linic, S., 2016. Direct electrochemical oxidation of ethanol on SOFCs: improved carbon tolerance of Ni anode by alloying. Appl. Catal. B Environ. 183, 386-393. https://doi.org/10.1016/j.apcatb.2015.11.002.

[42]

FolĘGa, P., Burchart, D., Marzec, P., Jursova, S., Pustejovska, P., 2022. Potential environmental life cycle impacts of fuel cell electric vehicles powered by hydrogen produced from polish coke oven gas. Transport Problems 17 (1), 151-161. https://doi.org/10.20858/tp.2022.17.1.13.

[43]

Fujisawa, A., Miura, S., Mitsutake, Y., Monde, M., 2013. Simulation study of hydrogen purification using metal hydride. J. Alloys Compd. 580, S423-S426. https://doi.org/10.1016/j.jallcom.2013.03.262.

[44]

Gai, L., Varbanov, P.S., Fan, Y.V., Klemeš J.J., Nižetić S., 2022. Total Site Hydrogen Integration with fresh hydrogen of multiple quality and waste hydrogen recovery in refineries. Int. J. Hydrogen Energy 47 (24), 12159-12178. https://doi.org/10.1016/j.ijhydene.2021.06.154.

[45]

Gao, Y., et al., 2024. Research status and analysis of hydrogen-blended natural gas transportation in natural gas pipelines. Low-Carbon Chemistry and Chemical Engineering 49 (3), 118-128. https://doi.org/10.12434/j.issn.2097-2547.20230260.

[46]

Garmsiri, S., Koohi-Fayegh, S., Rosen, M.A., Smith, G.R., 2016. Integration of transportation energy processes with a net zero energy community using captured waste hydrogen from electrochemical plants. Int. J. Hydrogen Energy 41 (19), 8337-8346. https://doi.org/10.1016/j.ijhydene.2015.11.191.

[47]

Ghanem, A.S., Liang, F., Liu, M., Jiang, H., Toghan, A., 2023. Hydrogen production by water splitting coupled with the oxidation of coke oven gas in a catalytic oxygen transport membrane reactor. Chem. Eng. J. 474, 145263. https://doi.org/10.1016/j.cej.2023.145263.

[48]

Gielen, D., et al., 2019. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006.

[49]

Grande, C.A., Morence, D.G.B., Bouzga, A.M., Andreassen, K.A., 2020. Silica gel as a selective adsorbent for biogas drying and upgrading. Ind. Eng. Chem. Res. 59 (21), 10142-10149. https://doi.org/10.1021/acs.iecr.0c00949.

[50]

Guandalini, G., Foresti, S., Campanari, S., Coolegem, J., ten Have, J., 2017. Simulation of a 2 MW PEM fuel cell plant for hydrogen recovery from chlor-alkali industry. Energy Proc. 105, 1839-1846. https://doi.org/10.1016/j.egypro.2017.03.538.

[51]

Guo, L., et al., 2023. Efficient hydrogen recovery and purification from industrial waste hydrogen to high-purity hydrogen based on metal hydride powder. Chem. Eng. J. 455, 140689. https://doi.org/10.1016/j.cej.2022.140689.

[52]

Haeseldonckx, D., D’haeseleer, W., 2007. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. Int. J. Hydrogen Energy 32 (10), 1381-1386. https://doi.org/10.1016/j.ijhydene.2006.10.018.

[53]

Han, L., et al., 2022. Latest research progress of hydrogen energy storage technology. Chem. Ind. Eng. Prog. 41 (S1), 108-117. https://doi.org/10.16085/j.issn.1000-6613.2022-0674.

[54]

Han, X., et al., 2023a. Optimization of the hydrogen production process coupled with membrane separation and steam reforming from coke oven gas using the response surface methodology. Int. J. Hydrogen Energy 48 (67), 26238-26250. https://doi.org/10.1016/j.ijhydene.2023.03.222.

[55]

Han, Z., et al., 2023b. Mechanistic insight into catalytic conversion of methane on a Sr2Fe1.5Mo0.5O6-δ perovskite anode: a combined EIS-DRT, DFT and TPSR investigation. J. Mater. Chem. A 11, 18820-18831. https://doi.org/10.1039/d3ta03391k.

[56]

Han, Z., Dong, H., Yang, Y., Yu, H., Yang, Z., 2024. Novel BaO-decorated carbon-tolerant Ni-YSZ anode fabricated by an efficient phase inversion-impregnation approach. J. Power Sources 591, 233869. https://doi.org/10.1016/j.jpowsour.2023.233869.

[57]

Han, Z., et al., 2017. High-performance SOFCs with impregnated Sr2Fe1.5Mo0.5O6-δ anodes toward sulfur resistance. J. Alloys Compd. 703, 258-263. https://doi.org/10.1016/j.jallcom.2017.01.341.

[58]

Han, Z., Yang, Z., Han, M., 2018. Cell-protecting regeneration from anode carbon deposition using in situ produced oxygen and steam: a combined experimental and theoretical study. J. Mater. Sci. Technol. 34 (12), 2375-2383. https://doi.org/10.1016/j.jmst.2018.04.011.

[59]

Han, Z., Yu, H., Li, C., Zhou, S., 2021. Mulch-assisted ambient-air synthesis of oxygen-rich activated carbon for hydrogen storage: a combined experimental and theoretical case study. Appl. Surf. Sci. 544, 148963. https://doi.org/10.1016/j.apsusc.2021.148963.

[60]

He, K., Wang, L., 2017. A review of energy use and energy-efficient technologies for the iron and steel industry. Renew. Sustain. Energy Rev. 70, 1022-1039. https://doi.org/10.1016/j.rser.2016.12.007.

[61]

Henis, J.M.S., Tripodi, M.K., 1980. A novel approach to gas separations using composite hollow fiber membranes. Separ. Sci. Technol. 15 (4), 1059-1068. https://doi.org/10.1080/01496398008076287.

[62]

Hookham, M.J.F., et al., 2022. Impact of hydrogen liquefaction on hydrogen fuel quality for transport applications (ISO-14687:2019). Processes 10 (9), 1697. https://doi.org/10.3390/pr10091697.

[63]

Horen, A.S., Lee, M.W., 1992. Metal hydride based isotope separation - large-scale operations. Fusion Technol. 21 (2P2), 282-286. https://doi.org/10.13182/FST92-A29758.

[64]

Hurskainen, M., Ihonen, J., 2020. Techno-economic feasibility of road transport of hydrogen using liquid organic hydrogen carriers. Int. J. Hydrogen Energy 45 (56), 32098-32112. https://doi.org/10.1016/j.ijhydene.2020.08.186.

[65]

Hwang, J., Maharjan, K., Cho, H., 2023. A review of hydrogen utilization in power generation and transportation sectors: achievements and future challenges. Int. J. Hydrogen Energy 48 (74), 28629-28648. https://doi.org/10.1016/j.ijhydene.2023.04.024.

[66]

Ihonen, J., et al., 2017. Operational experiences of PEMFC pilot plant using low grade hydrogen from sodium chlorate production process. Int. J. Hydrogen Energy 42 (44), 27269-27283. https://doi.org/10.1016/j.ijhydene.2017.09.056.

[67]

Isaac, T., 2019. HyDeploy: the UK's first hydrogen blending deployment project. Clean Energy 3 (2), 114-125. https://doi.org/10.1093/ce/zkz006.

[68]

Jackson, C., Raymakers, L.F.J.M., Mulder, M.J.J., Kucernak, A.R.J., 2020. Poison mitigation strategies for the use of impure hydrogen in electrochemical hydrogen pumps and fuel cells. J. Power Sources 472, 228476. https://doi.org/10.1016/j.jpowsour.2020.228476.

[69]

Jackson, C., Smith, G., Kucernak, A.R., 2024. Deblending and purification of hydrogen from natural gas mixtures using the electrochemical hydrogen pump. Int. J. Hydrogen Energy 52, 816-826. https://doi.org/10.1016/j.ijhydene.2023.05.065.

[70]

Jena, P., 2011. Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 2 (3), 206-211. https://doi.org/10.1021/jz1015372.

[71]

Jeong, H., Cho, S., Han, C., 2012. Economic feasibility analysis of a PEMFC power plant fueled by by-product hydrogen from a petrochemical complex with a pressure swing adsorption unit. J. Chem. Eng. Jpn. 45 (10), 873-880. https://doi.org/10.1252/jcej.12we082.

[72]

Jia, Z., Gao, H., 2011. Analysis of low temperature recovery unit in propane dehydrogenation to propylene process. Chem. Eng. (China) 39 (7), 93-97. https://doi.org/10.3969/j.issn.1005-9954.2011.07.022.

[73]

Jiang, L., Fox, V.G., Biegler, L.T., 2004. Simulation and optimal design of multiple-bed pressure swing adsorption systems. AIChE J. 50 (11), 2904-2917. https://doi.org/10.1002/aic.10223.

[74]

Jin, X., et al., 2024. Spatial confinement of Pt nanoparticles in carbon nanotubes for efficient and selective H2 evolution from methanol. Adv. Sci. 11 (12), 2306893. https://doi.org/10.1002/advs.202306893.

[75]

Joseck, F., Wang, M., Wu, Y., 2008. Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills. Int. J. Hydrogen Energy 33 (4), 1445-1454. https://doi.org/10.1016/j.ijhydene.2007.10.022.

[76]

Jou, C.-J.G., Lee, C.-l., Tsai, C.-H., Wang, H.P., 2008. Reduction of energy cost and CO2 emission for the boilers in a full-scale refinery plant by adding waste hydrogen-rich fuel gas. Energy Fuel. 22 (1), 564-569. https://doi.org/10.1021/ef070180z.

[77]

Kaldis, S.P., Kapantaidakis, G.C., Sakellaropoulos, G.P., 2000. Simulation of multicomponent gas separation in a hollow fiber membrane by orthogonal collocation — hydrogen recovery from refinery gases. J. Membr. Sci. 173 (1), 61-71. https://doi.org/10.1016/S0376-7388(00)00353-7.

[78]

Kang, Z., Liao, Q., Zhang, Z., Zhang, Y., 2022. Carbon neutrality orientates the reform of the steel industry. Nat. Mater. 21 (10), 1094-1098. https://doi.org/10.1038/s41563-022-01370-7.

[79]

Karakilcik, M., Erden, M., Cilogulları M., Dincer, I., 2018. Investigation of hydrogen production performance of a reactor assisted by a solar pond via photoelectrochemical process. Int. J. Hydrogen Energy 43 (23), 10549-10554. https://doi.org/10.1016/j.ijhydene.2018.01.031.

[80]

Karapekmez, A., Dincer, I., 2020. Thermodynamic analysis of a novel solar and geothermal based combined energy system for hydrogen production. Int. J. Hydrogen Energy 45 (9), 5608-5628. https://doi.org/10.1016/j.ijhydene.2018.12.046.

[81]

Keränen, T.M., et al., 2014. A 50 kW PEMFC pilot plant operated with industry grade hydrogen - system design and site integration. Fuel Cell. 14 (5), 701-708. https://doi.org/10.1002/fuce.201300241.

[82]

Khasawneh, H., Saidan, M.N., Al-Addous, M., 2019. Utilization of hydrogen as clean energy resource in chlor-alkali process. Energy Explor. Exploit. 37 (3), 1053-1072. https://doi.org/10.1177/0144598719839767.

[83]

Kim, T., Song, Y., Kang, J., Kim, S.K., Kim, S., 2022. A review of recent advances in hydrogen purification for selective removal of oxygen: deoxo catalysts and reactor systems. Int. J. Hydrogen Energy 47 (59), 24817-24834. https://doi.org/10.1016/j.ijhydene.2022.05.221.

[84]

Kovač A., Paranos, M., Marciuš D., 2021. Hydrogen in energy transition: a review. Int. J. Hydrogen Energy 46 (16), 10016-10035. https://doi.org/10.1016/j.ijhydene.2020.11.256.

[85]

Kumar, A., Muthukumar, P., 2024. Experimental investigation on hydrogen transfer in coupled metal hydride reactors for multistage hydrogen purification application. Appl. Energy 363, 123076. https://doi.org/10.1016/j.apenergy.2024.123076.

[86]

Kwiecińska-Mydlak, A., Sajdak, M., Rychlewska, K., Figa, J., 2019. The role of a chemical loop in removal of hazardous contaminants from coke oven wastewater during its treatment. Open Chem. 17 (1), 1288-1300. https://doi.org/10.1515/chem-2019-0142.

[87]

Lan, C., et al., 2022. Effect of H2 on blast furnace ironmaking: a review. Metals 12 (11), 1864. https://doi.org/10.3390/met12111864.

[88]

Laureys, A., et al., 2022. Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: a review of factors affecting hydrogen induced degradation. J. Nat. Gas Sci. Eng. 101, 104534. https://doi.org/10.1016/j.jngse.2022.104534.

[89]

Lazzarini, A., et al., 2023. Boronation of biomass-derived materials for hydrogen storage. Compounds 3 (1), 244-279. https://doi.org/10.3390/compounds3010020.

[90]

Lebrouhi, B.E., Djoupo, J.J., Lamrani, B., Benabdelaziz, K., Kousksou, T., 2022. Global hydrogen development - a technological and geopolitical overview. Int. J. Hydrogen Energy 47 (11), 7016-7048. https://doi.org/10.1016/j.ijhydene.2021.12.076.

[91]

Lee, D.-Y., Elgowainy, A., 2018. By-product hydrogen from steam cracking of natural gas liquids (NGLs): potential for large-scale hydrogen fuel production, life-cycle air emissions reduction, and economic benefit. Int. J. Hydrogen Energy 43 (43), 20143-20160. https://doi.org/10.1016/j.ijhydene.2018.09.039.

[92]

Lee, D.-Y., Elgowainy, A., Dai, Q., 2018. Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States. Appl. Energy 217, 467-479. https://doi.org/10.1016/j.apenergy.2018.02.132.

[93]

Lei, T., et al., 2023. Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature 622 (7983), 514-520. https://doi.org/10.1038/s41586-023-06486-7.

[94]

Li, X., Li, J., Yang, B., 2014. Design and control of the cryogenic distillation process for purification of synthetic natural gas from methanation of coke oven gas. Ind. Eng. Chem. Res. 53 (50), 19583-19593. https://doi.org/10.1021/ie5024063.

[95]

Lider, A., et al., 2023. Materials and techniques for hydrogen separation from methanecontaining gas mixtures. Int. J. Hydrogen Energy 48 (73), 28390-28411. https://doi.org/10.1016/j.ijhydene.2023.03.345.

[96]

Liemberger, W., Groß M., Miltner, M., Harasek, M., 2017. Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas. J. Clean. Prod. 167, 896-907. https://doi.org/10.1016/j.jclepro.2017.08.012.

[97]

Liu, B., et al., 2020a. Two-stage VSA/PSA for capturing carbon dioxide (CO2) and producing hydrogen (H2) from steam-methane reforming gas. Int. J. Hydrogen Energy 45 (46), 24870-24882. https://doi.org/10.1016/j.ijhydene.2020.06.264.

[98]

Liu, M., Shi, K., Zhao, Q., Li, J., Liu, G., 2023. Research progress of solid hydrogen storage materials. Chem. Ind. Eng. Prog. 42 (9), 4746-4769. https://doi.org/10.16085/j.issn.1000-6613.2022-1906.

[99]

Liu, P., Han, X., 2022. Comparative analysis on similarities and differences of hydrogen energy development in the World's top 4 largest economies: a novel framework. Int. J. Hydrogen Energy 47 (16), 9485-9503. https://doi.org/10.1016/j.ijhydene.2022.01.038.

[100]

Liu, R., 2019. Discussion on safety setting of Multi component sodium chloride waste water incineration plant with byproduct hydrogen. China Chlor-Alkali (10), 31-32. https://doi.org/10.3969/j.issn.1009-1785.2019.10.013.

[101]

Liu, W., et al., 2020b. Durability of direct-internally reformed simulated coke oven gas in an anode-supported planar solid oxide fuel cell based on double-sided cathodes. J. Power Sources 465, 228284. https://doi.org/10.1016/j.jpowsour.2020.228284.

[102]

Liu, W., Wan, Y., Xiong, Y., Gao, P., 2022. Green hydrogen standard in China: standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen. Int. J. Hydrogen Energy 47 (58), 24584-24591. https://doi.org/10.1016/j.ijhydene.2021.10.193.

[103]

Lively, R.P., Bessho, N., Bhandari, D.A., Kawajiri, Y., Koros, W.J., 2012. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification. Int. J. Hydrogen Energy 37 (20), 15227-15240. https://doi.org/10.1016/j.ijhydene.2012.07.110.

[104]

Loeb, S., Sourirajan, S., 1963. Sea water demineralization by means of an osmotic membrane, saline water conversion—II. Adv. Chemistry. AMERICAN CHEMICAL SOCIETY 117-132. https://doi.org/10.1021/ba-1963-0038.ch009.

[105]

Long, Y., et al., 2022. Hydrogen generation from water splitting over polyfunctional perovskite oxygen carriers by using coke oven gas as reducing agent. Appl. Catal. B Environ. 301, 120778. https://doi.org/10.1016/j.apcatb.2021.120778.

[106]

Lopes, F.V.S., et al., 2009. Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Separ. Sci. Technol. 44 (5), 1045-1073. https://doi.org/10.1080/01496390902729130.

[107]

Lu, X., Zhao, J., Deng, C., 2023. Rigorous modelling and energy performance evaluation for PDH reaction gas separation and hydrogen purification. Chin. J. Process Eng. 23 (1), 144-153. https://doi.org/10.12034/j.issn.1009-606X.221334.

[108]

Luberti, M., Ahn, H., 2022. Review of Polybed pressure swing adsorption for hydrogen purification. Int. J. Hydrogen Energy 47 (20), 10911-10933. https://doi.org/10.1016/j.ijhydene.2022.01.147.

[109]

Luberti, M., Friedrich, D., Brandani, S., Ahn, H., 2014. Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption 20 (2), 511-524. https://doi.org/10.1007/s10450-013-9598-0.

[110]

Lui, J., Chen, W.-H., Tsang, D.C.W., You, S., 2020. A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies. Renew. Sustain. Energy Rev. 134, 110365. https://doi.org/10.1016/j.rser.2020.110365.

[111]

Luo, Y., et al., 2024. A low-carbon optimal operation method for an industrial park multienergy coupling system utilizing by-product hydrogen. Sustainability 16 (6), 2354. https://doi.org/10.3390/su16062354.

[112]

Lux, B., et al., 2022. The role of hydrogen in a greenhouse gas-neutral energy supply system in Germany. Energy Convers. Manag. 270, 116188. https://doi.org/10.1016/j.enconman.2022.116188.

[113]

Ma, Y., et al., 2022. Facile synthesis of porphyrin-based PAF membrane for hydrogen purification. Inorg. Chem. Commun. 141, 109526. https://doi.org/10.1016/j.inoche.2022.109526.

[114]

Mahajan, D., Tan, K., Venkatesh, T., Kileti, P., Clayton, C.R., 2022. Hydrogen blending in gas pipeline networks—a review. Energies 15 (10), 3582. https://doi.org/10.3390/en15103582.

[115]

Malek, A., Farooq, S., 1998. Hydrogen purification from refinery fuel gas by pressure swing adsorption. AIChE J. 44 (9), 1985-1992. https://doi.org/10.1002/aic.690440906.

[116]

Mao, D., Griffin, J.M., Dawson, R., Fairhurst, A., Bimbo, N., 2021. Metal organic frameworks for hydrogen purification. Int. J. Hydrogen Energy 46 (45), 23380-23405. https://doi.org/10.1016/j.ijhydene.2020.12.181.

[117]

Mariños Rosado, D.J., et al., 2020. Energetic analysis of reheating furnaces in the combustion of coke oven gas, Linz-Donawitz gas and blast furnace gas in the steel industry. Appl. Therm. Eng. 169, 114905. https://doi.org/10.1016/j.applthermaleng.2020.114905.

[118]

Mehrpooya, M., Mousavi, S.A., Asadnia, M., Zaitsev, A., Sanavbarov, R., 2021. Conceptual design and evaluation of an innovative hydrogen purification process applying diffusion-absorption refrigeration cycle (Exergoeconomic and exergy analyses). J. Clean. Prod. 316, 128271. https://doi.org/10.1016/j.jclepro.2021.128271.

[119]

Mendes, A.M.M., Costa, C.A.V., Rodrigues, A.r.E., 2001. Oxygen separation from air by PSA: modelling and experimental results: Part I: isothermal operation. Sep. Purif. Technol. 24 (1), 173-188. https://doi.org/10.1016/S1383-5866(00)00227-6.

[120]

Minko, K.B., Artemov, V.I., Yan'kov, G.G., 2015. Numerical study of hydrogen purification using metal hydride reactor with aluminium foam. Appl. Therm. Eng. 76, 175-184. https://doi.org/10.1016/j.applthermaleng.2014.11.018.

[121]

Miura, S., Fujisawa, A., Ishida, M., 2012. A hydrogen purification and storage system using metal hydride. Int. J. Hydrogen Energy 37 (3), 2794-2799. https://doi.org/10.1016/j.ijhydene.2011.03.150.

[122]

Miura, S., et al., 2013. A hydrogen purification and storage system using CO adsorbent and metal hydride. J. Alloys Compd. 580, S414-S417. https://doi.org/10.1016/j.jallcom.2013.03.154.

[123]

Moral, G., Ortiz-Imedio, R., Ortiz, A., Gorri, D., Ortiz, I., 2022. Hydrogen recovery from coke oven gas. Comparative analysis of technical alternatives. Ind. Eng. Chem. Res. 61 (18), 6106-6124. https://doi.org/10.1021/acs.iecr.1c04668.

[124]

Mousa, E.A., Babich, A., Senk, D., 2014. Utilization of coke oven gas and converter gas in the direct reduction of lump iron ore. Metall. Mater. Trans. B 45 (2), 617-628. https://doi.org/10.1007/s11663-013-9978-6.

[125]

Mrusek, S., Blasius, M., Morgenroth, F., Thiele, S., Wasserscheid, P., 2024. Hydrogen extraction from methane-hydrogen mixtures from the natural gas grid by means of electrochemical hydrogen separation and compression. Int. J. Hydrogen Energy 50, 526-538. https://doi.org/10.1016/j.ijhydene.2023.08.195.

[126]

Naquash, A., et al., 2023. Separation and purification of syngas-derived hydrogen: a comparative evaluation of membrane- and cryogenic-assisted approaches. Chemosphere 313, 137420. https://doi.org/10.1016/j.chemosphere.2022.137420.

[127]

Nemitallah, M.A., Alnazha, A.A., Ahmed, U., El-Adawy, M., Habib, M.A., 2024. Review on techno-economics of hydrogen production using current and emerging processes: status and perspectives. Results in Engineering 21, 101890. https://doi.org/10.1016/j.rineng.2024.101890.

[128]

Niaz, S., Manzoor, T., Pandith, A.H., 2015. Hydrogen storage: materials, methods and perspectives. Renew. Sustain. Energy Rev. 50, 457-469. https://doi.org/10.1016/j.rser.2015.05.011.

[129]

Nishioka, K., Ujisawa, Y., Tonomura, S., Ishiwata, N., Sikstrom, P., 2016. Sustainable aspects of CO2 ultimate reduction in the steelmaking process (COURSE50 project), Part 1: hydrogen reduction in the blast furnace. Journal of Sustainable Metallurgy 2 (3), 200-208. https://doi.org/10.1007/s40831-016-0061-9.

[130]

Ortiz-Imedio, R., et al., 2021. Comparative performance of coke oven gas, hydrogen and methane in a spark ignition engine. Int. J. Hydrogen Energy 46 (33), 17572-17586. https://doi.org/10.1016/j.ijhydene.2019.12.165.

[131]

Osman, A.I., et al., 2022. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20 (1), 153-188. https://doi.org/10.1007/s10311-021-01322-8.

[132]

Ouyang, L., Jiang, J., Chen, K., Zhu, M., Liu, Z., 2021. Hydrogen production via hydrolysis and alcoholysis of light metal-based materials: a review. Nano-Micro Lett. 13 (1), 134. https://doi.org/10.1007/s40820-021-00657-9.

[133]

Park, Y., Kang, J.-H., Moon, D.-K., Jo, Y.S., Lee, C.-H., 2021. Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture. Chem. Eng. J. 408, 127299. https://doi.org/10.1016/j.cej.2020.127299.

[134]

Paulu, A., Matuštík, J., Trecáková T., Kočí V., 2024. Overlooked source of hydrogen: the environmental potential of chlor-alkali by-product. Int. J. Hydrogen Energy 49, 1437-1443. https://doi.org/10.1016/j.ijhydene.2023.10.246.

[135]

Popel’, O.S., Tarasenko, A.B., 2022. Promising directions for hydrogen energy development in Russia. Appl. Sol. Energy 58 (1), 152-158. https://doi.org/10.3103/S0003701X22010133.

[136]

Portha, J.-F., Uribe-Soto, W., Commenge, J.-M., Valentin, S., Falk, L., 2021. Technoeconomic and carbon footprint analyses of a coke oven gas reuse process for methanol production. Processes 9 (6), 1042. https://doi.org/10.3390/pr9061042.

[137]

Qazi, I.A., Abd, A.A., Hasan, M.M., Othman, M.R., 2023. Optimizing hydrogen purification performance by membrane from industrial waste of methanol production. Chem. Engineering J. Adv. 14, 100490. https://doi.org/10.1016/j.ceja.2023.100490.

[138]

Qian, J., Sun, F., Qin, L., 2012. Hydrothermal synthesis of zeolitic imidazolate framework- 67 (ZIF-67) nanocrystals. Mater. Lett. 82, 220-223. https://doi.org/10.1016/j.matlet.2012.05.077.

[139]

Randström, S., Lagergren, C., Capobianco, P., 2006. Corrosion of anode current collectors in molten carbonate fuel cells. J. Power Sources 160 (2), 782-788. https://doi.org/10.1016/j.jpowsour.2006.04.069.

[140]

Razzaq, R., Li, C., Zhang, S., 2013. Coke oven gas: availability, properties, purification, and utilization in China. Fuel 113, 287-299. https://doi.org/10.1016/j.fuel.2013.05.070.

[141]

Relvas, F., Whitley, R.D., Silva, C., Mendes, A., 2018. Single-stage pressure swing adsorption for producing fuel cell grade hydrogen. Ind. Eng. Chem. Res. 57 (14), 5106-5118. https://doi.org/10.1021/acs.iecr.7b05410.

[142]

Ren, J., Musyoka, N.M., Langmi, H.W., Mathe, M., Liao, S., 2017. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review. Int. J. Hydrogen Energy 42 (1), 289-311. https://doi.org/10.1016/j.ijhydene.2016.11.195.

[143]

Ritter, J.A., Yang, R.T., 1987. Equilibrium adsorption of multicomponent gas mixtures at elevated pressures. Ind. Eng. Chem. Res. 26 (8), 1679-1686. https://doi.org/10.1021/ie00068a032.

[144]

Roy, M.M., Tomita, E., Kawahara, N., Harada, Y., Sakane, A., 2009. Performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas. Int. J. Hydrogen Energy 34 (23), 9628-9638. https://doi.org/10.1016/j.ijhydene.2009.09.016.

[145]

Samiee, L., Goodarzvand-Chegini, F., Ghasemikafrudi, E., Kashefi, K., 2021. Hydrogen recovery in an industrial chlor-alkali plant using alkaline fuel cell and hydrogen boiler techniques: techno-economic assessment and emission estimation. J. Renewable Energy and Environ. 8 (1), 49-57. https://doi.org/10.30501/jree.2020.236413.1124.

[146]

Sammes, N., Bove, R., Stahl, K., 2004. Phosphoric acid fuel cells: fundamentals and applications. Curr. Opin. Solid State Mater. Sci. 8 (5), 372-378. https://doi.org/10.1016/j.cossms.2005.01.001.

[147]

Sazali, N., 2020. A review of the application of carbon-based membranes to hydrogen separation. J. Mater. Sci. 55 (25), 11052-11070. https://doi.org/10.1007/s10853-020-04829-7.

[148]

Schlapbach, L., Züttel, A., 2001. Hydrogen-storage materials for mobile applications. Nature 414 (6861), 353-358. https://doi.org/10.1038/35104634.

[149]

Shabbani, H.J.K., Othman, M.R., Al- Janabi, S.K., Barron, A.R., Helwani, Z., 2024. H2 purification employing pressure swing adsorption process: parametric and bibliometric review. Int. J. Hydrogen Energy 50, 674-699. https://doi.org/10.1016/j.ijhydene.2023.11.069.

[150]

Shafiq, S., Al-Maythalony, B.A., Usman, M., Ba-Shammakh, M.S., Al-Shammari, A.A., 2021. ZIF-95 as a filler for enhanced gas separation performance of polysulfone membrane. RSC Adv. 11 (54), 34319-34328. https://doi.org/10.1039/D1RA06271A.

[151]

Shalygin, M.G., Abramov, S.M., Netrusov, A.I., Teplyakov, V.V., 2015. Membrane recovery of hydrogen from gaseous mixtures of biogenic and technogenic origin. Int. J. Hydrogen Energy 40 (8), 3438-3451. https://doi.org/10.1016/j.ijhydene.2014.12.078.

[152]

Shamsudin, I.K., Abdullah, A., Idris, I., Gobi, S., Othman, M.R., 2019. Hydrogen purification from binary syngas by PSA with pressure equalization using microporous palm kernel shell activated carbon. Fuel 253, 722-730. https://doi.org/10.1016/j.fuel.2019.05.029.

[153]

Sheridan, J.J., Eisenberg, F.G., Greskovich, E.J., Sandrock, G.D., Huston, E.L., 1983. Hydrogen separation from mixed gas streams using reversible metal hydrides. J. Less Common Metals 89 (2), 447-455. https://doi.org/10.1016/0022-5088(83)90355-7.

[154]

Shi, J., Xu, Z., Zuo, T., 2023. A new way for the comprehensive application of by-product hydrogen in chlor-alkali enterprises-hydrogen fuel cell power generation. China Chlor-Alkali (9), 58-61. https://doi.org/10.3969/j.issn.1009-1785.2023.09.016.

[155]

Shih, A.J., Haile, S.M., 2022. Electrifying membranes to deliver hydrogen. Science 376 (6591), 348-349. https://doi.org/10.1126/science.abo5369.

[156]

Shukla, A., Karmakar, S., Biniwale, R.B., 2012. Hydrogen delivery through liquid organic hydrides: considerations for a potential technology. Int. J. Hydrogen Energy 37 (4), 3719-3726. https://doi.org/10.1016/j.ijhydene.2011.04.107.

[157]

Sidhikku Kandath Valappil, R., Ghasem, N., Al-Marzouqi, M., 2021. Current and future trends in polymer membrane-based gas separation technology: a comprehensive review. J. Ind. Eng. Chem. 98, 103-129. https://doi.org/10.1016/j.jiec.2021.03.030.

[158]

Singla, M.K., Gupta, J., Beryozkina, S., Safaraliev, M., Singh, M., 2024. The colorful economics of hydrogen: assessing the costs and viability of different hydrogen production methods - a review. Int. J. Hydrogen Energy 61, 664-677. https://doi.org/10.1016/j.ijhydene.2024.02.255.

[159]

Sircar, S., Golden, T.C., Rao, M.B., 1996. Activated carbon for gas separation and storage. Carbon 34 (1), 1-12. https://doi.org/10.1016/0008-6223(95)00128-X.

[160]

Skarstrom, C.W., 1960. Method and apparatus for fractionating gaseous mixtures by adsorption. U.S. Patent.

[161]

Song, M., et al., 2024. Corrosion engineering of part-per-million single atom Pt1/Ni(OH) 2 electrocatalyst for PET upcycling at ampere-level current density. Adv. Mater. 36 (23), 2403234. https://doi.org/10.1002/adma.202403234.

[162]

Song, P., Sui, Y., Shan, T., Hou, J., Wang, X., 2020. Assessment of hydrogen supply solutions for hydrogen fueling station: A Shanghai case study. Int. J. Hydrogen Energy 45 (58), 32884-32898. https://doi.org/10.1016/j.ijhydene.2020.09.117.

[163]

Stern, S.A., Mullhaupt, J.T., Gareis, P.J., 1969. The effect of pressure on the permeation of gases and vapors through polyethylene. Usefulness of the corresponding states principle. AIChE J. 15 (1), 64-73. https://doi.org/10.1002/aic.690150117.

[164]

Streets, D.G., et al., 2006. Revisiting China's CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: synthesis of inventories, atmospheric modeling, and observations. J. Geophys. Res. Atmos. 111, D14306. https://doi.org/10.1029/2006JD007118.

[165]

Sui, P., et al., 2023. Current situation and development prospects of metallurgical byproduct gas utilization in China's steel industry. Int. J. Hydrogen Energy 48 (74), 28945-28969. https://doi.org/10.1016/j.ijhydene.2023.04.050.

[166]

Talagañis, B.A., Meyer, G.O., Oliva, D.G., Fuentes, M., Aguirre, P.A., 2014. Modeling and optimal design of cyclic processes for hydrogen purification using hydride-forming metals. Int. J. Hydrogen Energy 39 (33), 18997-19008. https://doi.org/10.1016/j.ijhydene.2014.09.045.

[167]

Tan, K.C., Chua, Y.S., He, T., Chen, P., 2023. Strategies of thermodynamic alternation on organic hydrogen carriers for hydrogen storage application: a review. Green Energy and Resources 1 (2), 100020. https://doi.org/10.1016/j.gerr.2023.100020.

[168]

Tang, J., et al., 2020. Development and progress on hydrogen metallurgy. Int. J. Miner. Metall. Mater. 27 (6), 713-723. https://doi.org/10.1007/s12613-020-2021-4.

[169]

Tomczyk, P., 2006. MCFC versus other fuel cells—characteristics, technologies and prospects. J. Power Sources 160 (2), 858-862. https://doi.org/10.1016/j.jpowsour.2006.04.071.

[170]

Tondeur, D., Wankat, P.C., 1985. Gas purification by pressure swing adsorption. Separ. Purif. Methods 14 (2), 157-212. https://doi.org/10.1080/03602548508068420.

[171]

Tsipis, E.V., et al., 2023. Waste gas utilization potential for solid oxide fuel cells: a brief review. Renew. Sustain. Energy Rev. 188, 113880. https://doi.org/10.1016/j.rser.2023.113880.

[172]

Unruh, G.C., 2000. Understanding carbon lock-in. Energy Pol. 28 (12), 817-830. https://doi.org/10.1016/S0301-4215(00)00070-7.

[173]

Van Acht, S.C.J., et al., 2020. Simulation of integrated novel PSA/EHP/C process for highpressure hydrogen recovery from Coke Oven Gas. Int. J. Hydrogen Energy 45 (30), 15196-15212. https://doi.org/10.1016/j.ijhydene.2020.03.211.

[174]

Van Acht, S.C.J., et al., 2021. Optimization of VPSA-EHP/C process for high-pressure hydrogen recovery from Coke Oven Gas using CO selective adsorbent. Int. J. Hydrogen Energy 46 (1), 709-725. https://doi.org/10.1016/j.ijhydene.2020.10.005.

[175]

van den Berg, A.W.C., Areán, C.O., 2008. Materials for hydrogenstorage: current research trends and perspectives. Chem. Commun. (6), 668-681. https://doi.org/10.1039/b712576n.

[176]

Verhage, A.J.L., Coolegem, J.F., Mulder, M.J.J., Yildirim, M.H., de Bruijn, F.A., 2013. 30,000 h operation of a 70 kW stationary PEM fuel cell system using hydrogen from a chlorine factory. Int. J. Hydrogen Energy 38 (11), 4714-4724. https://doi.org/10.1016/j.ijhydene.2013.01.152.

[177]

Vivanco-Martín, B., Iranzo, A., 2023. Analysis of the European strategy for hydrogen: a comprehensive review. Energies 16 (9), 3866. https://doi.org/10.3390/en16093866.

[178]

Wang, C., Li, Y., Wan, J., Hu, Y., 2024. Analysis of CO2 emissions reduction via byproduct hydrogen. Int. J. Hydrogen Energy 67, 942-948. https://doi.org/10.1016/j.ijhydene.2024.02.138.

[179]

Wang, C., et al., 2023. A novel electrode for value-generating anode reactions in water electrolyzers at industrial current densities. Angew. Chem. Int. Ed. 62 (7), e202215804. https://doi.org/10.1002/anie.202215804.

[180]

Wang, Q., Xue, M., Lin, B.-L., Lei, Z., Zhang, Z., 2020. Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China. J. Clean. Prod. 275, 123061. https://doi.org/10.1016/j.jclepro.2020.123061.

[181]

Wang, X., Teichgraeber, H., Palazoglu, A., El-Farra, N.H., 2014. An economic receding horizon optimization approach for energy management in the chlor-alkali process with hybrid renewable energy generation. J. Process Control 24 (8), 1318-1327. https://doi.org/10.1016/j.jprocont.2014.04.017.

[182]

Wilcox, J., 2012. Cryogenic distillation and air separation. Carbon Capture 219-229. https://doi.org/10.1007/978-1-4614-2215-0_6.

[183]

Springer, New York, New, York, NY. Witkowski, A., Rusin, A., Majkut, M., Stolecka, K., 2017. Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects. Energy 141, 2508-2518. https://doi.org/10.1016/j.energy.2017.05.141.

[184]

Wu, Y., et al., 2024a. High-surface area mesoporous Sc2O3 with abundant oxygen vacancies as new and advanced electrocatalyst for electrochemical biomass valorization. Adv. Mater. 36 (16), 2311698. https://doi.org/10.1002/adma.202311698.

[185]

Wu, Y., et al., 2024b. Integrating theory with the nanoreactor concept to synthesize hollow carbon sphere-encapsulated PtNi alloys for enhanced H2 generation. Carbon Energy 6 (7), e455. https://doi.org/10.1002/cey2.455.

[186]

Xiang, D., Huang, W., Huang, P., 2018a. A novel coke-oven gas-to-natural gas and hydrogen process by integrating chemical looping hydrogen with methanation. Energy 165, 1024-1033. https://doi.org/10.1016/j.energy.2018.10.050.

[187]

Xiang, D., Li, P., Xia, Y., 2023. Conceptual design and techno-economic analysis of a novel propane dehydrogenation process integrated with chemical looping combustion and CO2 hydrogenation. Energy Convers. Manag. 281, 116820. https://doi.org/10.1016/j.enconman.2023.116820.

[188]

Xiang, D., et al., 2018b. A chemical looping scheme of co-feeding of coke-oven gas and pulverized coke toward polygeneration of olefins and ammonia. Chem. Eng. J. 334, 1754-1765. https://doi.org/10.1016/j.cej.2017.11.156.

[189]

Xiang, D., Xiang, J., Sun, Z., Cao, Y., 2017. The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization. Energy 140, 78-91. https://doi.org/10.1016/j.energy.2017.08.058.

[190]

Xiang, D., Zhou, Y., 2018. Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process. Appl. Energy 229, 1024-1034. https://doi.org/10.1016/j.apenergy.2018.08.081.

[191]

Xu, K., et al., 2023. Self-hydrating of a ceria-based catalyst enables efficient operation of solid oxide fuel cells on liquid fuels. Sci. Bull. 68 (21), 2574-2582. https://doi.org/10.1016/j.scib.2023.09.012.

[192]

Xu, Q., et al., 2022a. A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Convers. Manag. 253, 115175. https://doi.org/10.1016/j.enconman.2021.115175.

[193]

Xu, Y.-P., et al., 2022b. Assessment of methanol and electricity co-production plants based on coke oven gas and blast furnace gas utilization. Sustain. Prod. Consum. 32, 318-329. https://doi.org/10.1016/j.spc.2022.05.005.

[194]

Xue, F., Su, J., Li, P., 2020. Technical research on hydrogen supply chain industry. IOP Conf. Ser. Earth Environ. Sci. 558 (2), 022040. https://doi.org/10.1088/1755-1315/558/2/022040.

[195]

Yáñez, M., Ortiz, A., Gorri, D., Ortiz, I., 2021. Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams. Int. J. Hydrogen Energy 46 (33), 17507-17521. https://doi.org/10.1016/j.ijhydene.2020.04.026.

[196]

Yáñez, M., et al., 2020. PSA purification of waste hydrogen from ammonia plants to fuel cell grade. Sep. Purif. Technol. 240, 116334. https://doi.org/10.1016/j.seppur.2019.116334.

[197]

Yang, B., 2023. Application of hydrogen fuel cell technology in chlor alkali enterprises. China Chlor-Alkali (7), 59-62. https://doi.org/10.3969/j.issn.1009-1785.2023.07.015.

[198]

Yang, L., et al., 2011. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat. Commun. 2, 357. https://doi.org/10.1038/ncomms1359.

[199]

Yi, Q., et al., 2016. Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance. Energy 112, 618-628. https://doi.org/10.1016/j.energy.2016.06.111.

[200]

You, Y.-W., et al., 2012. H2 PSA purifier for CO removal from hydrogen mixtures. Int. J. Hydrogen Energy 37 (23), 18175-18186. https://doi.org/10.1016/j.ijhydene.2012.09.044.

[201]

Yu, J., 2022. Thoughts and suggestions on hydrogen optimization in traditional refineries under "dual carbon" goal. Green Petroleum & Petrochemicals 7 (2), 29-33t44. https://doi.org/10.3969/j.issn.2095-0942.2022.02.006.

[202]

Yuan, Z., et al., 2023. Membranes for hydrogen rainbow toward industrial decarbonization: status, challenges and perspectives from materials to processes. Chem. Eng. J. 470, 144328. https://doi.org/10.1016/j.cej.2023.144328.

[203]

Zhai, Y., Wang, S., 2023. Investigation on the performance of a by-product hydrogenfueled spark-ignition engine with Miller cycle under various lean conditions. Int. J. Hydrogen Energy 48 (93), 36541-36552. https://doi.org/10.1016/j.ijhydene.2023.06.044.

[204]

Zhang, J., Guo, L., 2024. Latest progress in hydrogen pipeline transportation technology. Chem. Ind. Eng. Prog. https://doi.org/10.16085/j.issn.1000-6613.2023-2164.

[205]

Zhang, L., Xie, W., Ren, Z., 2020. Combustion stability analysis for non-standard lowcalorific gases: blast furnace gas and coke oven gas. Fuel 278, 118216. https://doi.org/10.1016/j.fuel.2020.118216.

[206]

Zhang, Y., Tian, Z., Chen, X., Xu, X., 2022. Technology-environment-economy assessment of high-quality utilization routes for coke oven gas. Int. J. Hydrogen Energy 47 (1), 666-685. https://doi.org/10.1016/j.ijhydene.2021.10.011.

[207]

Zhao, Y., et al., 2021a. Key technologies and strategic thinking for the coal-coking-hydrogen-steel industry chain in China. Strategic Study of Chinese Academy of Engineering 23 (5), 103-115. https://doi.org/10.15302/j-sscae-2021.05.014.

[208]

Zhao, Y., et al., 2021b. Highly flexible and energy-efficient process for converting cokeoven gas and pulverized coke into methanol and ammonia using chemical looping technology. Energy Convers. Manag. 248, 114796. https://doi.org/10.1016/j.enconman.2021.114796.

[209]

Zhen, Z., et al., 2023. Hydrogen production paths in China based on learning curve and discrete choice model. J. Clean. Prod. 415, 137848. https://doi.org/10.1016/j.jclepro.2023.137848.

[210]

Zheng, Z., Xiwang, A., Sun, Y., 2024. Optimal scheduling of integrated energy system considering hydrogen blending gas and demand response. Energies 17 (8), 1902. https://doi.org/10.3390/en17081902.

[211]

Zhou, J., Guo, Y., Huang, Z., Wang, C., 2019. A review and prospects of gas mixture containing hydrogen as vehicle fuel in China. Int. J. Hydrogen Energy 44 (56), 29776-29784. https://doi.org/10.1016/j.ijhydene.2019.05.244.

[212]

Zhou, J., et al., 2021. Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: an empirical study in China. Energy 225, 120330. https://doi.org/10.1016/j.energy.2021.120330.

[213]

Zhu, Q.-L., Xu, Q., 2015. Liquid organic and inorganic chemical hydrides for highcapacity hydrogen storage. Energy Environ. Sci. 8 (2), 478-512. https://doi.org/10.1039/C4EE03690E.

[214]

Zou, C., et al., 2022. Industrial status, technological progress, challenges, and prospects of hydrogen energy. Nat. Gas. Ind. B 9 (5), 427-447. https://doi.org/10.1016/j.ngib.2022.04.006.

[215]

Züttel, A., 2003. Materials for hydrogen storage. Mater. Today 6 (9), 24-33. https://doi.org/10.1016/S1369-7021(03)00922-2.

AI Summary AI Mindmap
PDF (5418KB)

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/