Exploring the landscape of machine learning-aided research in biofuels and biodiesel: A bibliometric analysis

Avinash Alagumalai , Hua Song

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100089

PDF (2346KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100089 DOI: 10.1016/j.gerr.2024.100089
Research Article
research-article

Exploring the landscape of machine learning-aided research in biofuels and biodiesel: A bibliometric analysis

Author information +
History +
PDF (2346KB)

Abstract

This bibliometric analysis explores machine learning applications in biofuels and biodiesel research using Elsevier's Scopus database from 2013 to 2023. The research employs co-authorship, co-occurrence, citation, and co-citation analyses with fractional counting. Results indicate a significant rise in publications. Prominent funding agencies along this field include the National Natural Science Foundation of China, Brazil's Conselho Nacional de Desenvolvimento Científico e Tecnológico and the U.S. Department of Energy. Co-authorship analysis reveals contributions from 268 authors across 951 organizations in 71 countries, with strong collaboration in Asia. Citation analysis shows that 95% of articles have received at least one citation, with China and the United States leading in citation counts. This study highlights the interdisciplinary and collaborative nature of machine learning research in biofuels and biodiesel, driven by substantial contributions from key funding bodies and researchers worldwide.

Keywords

Machine learning / Biofuel / Biodiesel / Bibliometric analysis / Sustainability

Cite this article

Download citation ▾
Avinash Alagumalai, Hua Song. Exploring the landscape of machine learning-aided research in biofuels and biodiesel: A bibliometric analysis. Green Energy and Resources, 2024, 2(3): 100089 DOI:10.1016/j.gerr.2024.100089

登录浏览全文

4963

注册一个新账户 忘记密码

Funding source

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant RGPIN/05322-2019 and Grant ALLRP/565222-2021, and by Kara Technologies.

CRediT authorship contribution statement

Avinash Alagumalai: Writing - original draft, Visualization, Software, Methodology, Formal analysis, Data curation, Conceptualization. Hua Song: Writing - review & editing, Validation, Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

References

[1]

Ahmad, A., Yadav, A.K., Singh, A., 2023. Application of machine learning and genetic algorithms to the prediction and optimization of biodiesel yield from waste cooking oil. Kor. J. Chem. Eng. 40, 2941-2956. https://doi.org/10.1007/s11814-023-1489-9.

[2]

Aliramezani, M., Koch, C.R., Shahbakhti, M., 2022. Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: a review and future directions. Prog. Energy Combust. Sci. 88. https://doi.org/10.1016/j.pecs.2021.100967.

[3]

Chen, W., Liu, W., Geng, Y., Brown, M.T., Gao, C., Wu, R., 2017. Recent progress on emergy research: a bibliometric analysis. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2017.02.041.

[4]

Chozhavendhan, S., Vijay Pradhap Singh, M., Fransila, B., Praveen Kumar, R., Karthiga Devi, G., 2020. A review on influencing parameters of biodiesel production and purification processes. Curr. Res. Green Sustain. Chem. 1-2, 1-6. https://doi.org/10.1016/j.crgsc.2020.04.002.

[5]

Fauzi, A.H.M., Amin, N.A.S., Mat, R., 2014. Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study. Appl. Energy 114, 809-818.

[6]

Guo, J., Baghban, A., 2017. Application of ANFIS strategy for prediction of biodiesel production using supercritical methanol. Energy Sources, Part A Recover. Util. Environ. Eff. 39, 1862-1868. https://doi.org/10.1080/15567036.2017.1380731.

[7]

IEA, 2023. Renewables 2023. IEA, Paris. https://www.iea.org/reports/renewables-2023.

[8]

Licence: CC BY 4.0. Igou, T., Zhong, S., Reid, E., Chen, Y., 2023. Real-time sensor data profile-based deep learning method applied to open raceway pond microalgal productivity prediction. Environ. Sci. Technol. 57, 17981-17989. https://doi.org/10.1021/acs.est.2c07578.

[9]

Jena, P.C., Raheman, H., Prasanna Kumar, G.V., Machavaram, R., 2010. Biodiesel production from mixture of mahua and simarouba oils with high free fatty acids. Biomass Bioenergy 34, 1108-1116. https://doi.org/10.1016/j.biombioe.2010.02.019.

[10]

Karami, R., Rasul, M.G., Khan, M.M.K., Anwar, M., 2019. Performance analysis of direct injection diesel engine fueled with diesel-tomato seed oil biodiesel blending by ANOVA and ANN. Energies 12. https://doi.org/10.3390/en12234421.

[11]

Kim, M., Cui, F., 2023. Multiple-layer statistical methodology for developing data-driven models of anaerobic digestion process. J. Environ. Manag. 347. https://doi.org/10.1016/j.jenvman.2023.119153.

[12]

Konur, O., 2021. Algal Biomass Production for Biodiesel Production, pp. 695-717. https://doi.org/10.1201/9780367456207-18.

[13]

Kumar, S., 2020. Comparison of linear regression and artificial neural network technique for prediction of a soybean biodiesel yield. Energy Sources, Part A Recover. Util. Environ. Eff. 42, 1425-1435. https://doi.org/10.1080/15567036.2019.1604858.

[14]

Ofoefule, A.U., Esonye, C., Onukwuli, O.D., Nwaeze, E., Ume, C.S., 2019. Modeling and optimization of African pear seed oil esterification and transesterification using artificial neural network and response surface methodology comparative analysis. Ind. Crops Prod. 140. https://doi.org/10.1016/j.indcrop.2019.111707.

[15]

Opgenorth, P., Costello, Z., Okada, T., Goyal, G., Chen, Y., Gin, J., Benites, V., De Raad, M., Northen, T.R., Deng, K., Deutsch, S., Baidoo, E.E.K., Petzold, C.J., Hillson, N.J., Garcia Martin, H., Beller, H.R., 2019. Lessons from two design-buildtest- learn cycles of Dodecanol production in Escherichia coli aided by machine learning. ACS Synth. Biol. 8, 1337-1351. https://doi.org/10.1021/acssynbio.9b00020.

[16]

Piloto-Rodríguez, R., Sánchez-Borroto, Y., Lapuerta, M., Goyos-Pérez, L., Verhelst, S., 2013. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Convers. Manag. 65, 255-261. https://doi.org/10.1016/j.enconman.2012.07.023.

[17]

Rahimi, M., Mashhadimoslem, H., Vo Thanh, H., Ranjbar, B., Safarzadeh Khosrowshahi, M., Rohani, A., Elkamel, A., 2023. Yield prediction and optimization of biomass-based products by multi-machine learning schemes: neural, regression and function-based techniques. Energy 283. https://doi.org/10.1016/j.energy.2023.128546.

[18]

Sajjadi, B., Asaithambi, P., Raman, A.A.A., Ibrahim, S., 2017. Hybrid nero-fuzzy methods for estimation of ultrasound and mechanically stirring Influences on biodiesel synthesis through transesterification. Meas. J. Int. Meas. Confed. 103, 62-76. https://doi.org/10.1016/j.measurement.2017.01.044.

[19]

Sales, M.B., Borges, P.T., Ribeiro Filho, M.N., Miranda da Silva, L.R., Castro, A.P., Sanders Lopes, A.A., Chaves de Lima, R.K., de Sousa Rios, M.A., Dos Santos, J.C.S., 2022. Sustainable feedstocks and challenges in biodiesel production: an advanced bibliometric analysis. Bioeng. (Basel, Switzerland) 9. https://doi.org/10.3390/bioengineering9100539.

[20]

Sangué Djandja, O., Shan, Y.-Q., Fan, L., Wu, Y., Akim Salami, A., Lu, X., Duan, P.-G., Kang, S., 2023. Machine learning aids solvothermal liquefaction of algal biomass: prediction of nitrogen content and bio-oil yield. Fuel 353, 129284. https://doi.org/10.1016/j.fuel.2023.129284.

[21]

Scopus. Scopus content overview. Retrieved from Scopus Content Overview. https://www.scopus.com/sources.uri. (Accessed July 2024). https://www.elsevie r.com/__data/assets/pdf_file/0008/208772/ACAD_R_SC_FS.pdf [WWW Document].

[22]

URL. Shanmugam, P., Sivakumar, V., Murugesan, A., Ilangkumaran, M., 2011. Performance and exhaust emissions of a diesel engine using hybrid fuel with an artificial neural network. Energy Sources, Part A Recover. Util. Environ. Eff. 33, 1440-1450. https://doi.org/10.1080/15567036.2010.539085.

[23]

Silitonga, A.S., Mahlia, T.M.I., Shamsuddin, A.H., Ong, H.C., Milano, J., Kusumo, F., Sebayang, A.H., Dharma, S., Ibrahim, H., Husin, H., Mofijur, M., Rahman, S.M.A., 2019. Optimization of cerbera manghas biodiesel production using artificial neural networks integrated with ant colony optimization. Energies 12. https://doi.org/10.3390/en12203811.

[24]

Teo, S.H., Islam, A., Masoumi, H.R.F., Taufiq-Yap, Y.H., Janaun, J., Chan, E.-S., khaleque, M.A., 2017. Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus. Renew. Energy 111, 892-905. https://doi.org/10.1016/j.renene.2017.04.039.

[25]

Walczak, S., 2019. Artificial neural networks. In: Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction. IGI global, pp. 40-53.

[26]

Wang, C.M., Wu, S.B., Zhang, W. Di, Chen, Y.B., Yin, F., Liu, S.Q., Liu, J., Zhao, X.L., 2013. Process optimization based on artificial neural network of potassium hydroxide to preparing biodiesel. Appl. Mech. Mater. 263, 2225-2229.

AI Summary AI Mindmap
PDF (2346KB)

304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/