Co-incineration of multiple inorganic solid wastes towards clean disposal: Heat and mass transfer modeling, pollutant generation, and machine learning based proportioning

Guanyi Chen , Guandong Chen , Jingwei Li , Queyi Pan , Daolun Liang , Jie Qiu , Xiqiang Zhao , Xiaojia Wang , Zhongshan Li , Xiangping Li , Xiaoling Ma , Shuang Wu , Yunan Sun

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100086

PDF (3485KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100086 DOI: 10.1016/j.gerr.2024.100086
Research Articles
research-article

Co-incineration of multiple inorganic solid wastes towards clean disposal: Heat and mass transfer modeling, pollutant generation, and machine learning based proportioning

Author information +
History +
PDF (3485KB)

Abstract

The co-disposal of solid waste by industrial kilns is presently attracting increasing attention. In this study, we investigate the co-disposal of solid waste, i.e. converter ash (CA), sintered ash (SA), blast furnace bag ash (BA), and municipal solid waste incineration fly ash (MSWIFA), under simulated blast furnace ironmaking conditions. The results show that it is feasible to use blast furnace to treat MSWIFA, but the stability of temperature field should be controlled in the process of co-disposal. With the increase of temperature, the conversion rate of NO decreased to 16.4%, and ZnFe2O4 became the main mineral composition, accounting for 75.53%. Corresponding to the flue gas corrosion condition of solid waste treatment, it is found that the corrosion resistance of the furnace material TH347H is better than 20G. Finally, based on the experimental data, the nested optimization algorithm of machine learning model is established to achieve the reverse output of optimal conditions. Overall, the study provides theoretical support and methodology guidance for the co-disposal of solid waste in blast furnaces in providing support for the further development of co-disposal of solid waste in industrial kilns.

Keywords

Blast furnace / Co-disposal / Heat and mass transfer / Pollution mechanism / Machine learning

Cite this article

Download citation ▾
Guanyi Chen, Guandong Chen, Jingwei Li, Queyi Pan, Daolun Liang, Jie Qiu, Xiqiang Zhao, Xiaojia Wang, Zhongshan Li, Xiangping Li, Xiaoling Ma, Shuang Wu, Yunan Sun. Co-incineration of multiple inorganic solid wastes towards clean disposal: Heat and mass transfer modeling, pollutant generation, and machine learning based proportioning. Green Energy and Resources, 2024, 2(3): 100086 DOI:10.1016/j.gerr.2024.100086

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Guanyi Chen: Writing - review & editing, Supervision, Project administration. Guandong Chen: Writing - review & editing, Writing - original draft, Visualization. Jingwei Li: Writing - original draft, Formal analysis, Data curation. Queyi Pan: Writing - original draft, Visualization, Methodology. Daolun Liang: Writing - original draft, Supervision, Data curation. Jie Qiu: Writing - original draft, Visualization, Data curation. Xiqiang Zhao: Writing - original draft, Visualization, Data curation. Xiaojia Wang: Validation, Supervision, Methodology. Zhongshan Li: Writing - review & editing, Supervision, Conceptualization. Xiangping Li: Validation, Supervision, Methodology. Xiaoling Ma: Visualization, Supervision, Methodology. Shuang Wu: Writing - review & editing, Supervision, Formal analysis. Yunan Sun: Writing - review & editing, Methodology, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research was supported by the National Key R&D Program of China (No. 2020YFC1910000).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gerr.2024.100086.

References

[1]

Chen, C., Liang, R., Xia, S.G., Hou, D.H., Abdoulaye, B., Tao, J.Y., Yan, B.B., Cheng, Z.J., Chen, G.Y., 2023. Fast characterization of biodiesel via a combination of ATR-FTIR and machine learning models. Fuel 332, 11. https://doi.org/10.1016/j.fuel.2022.126177.

[2]

Chen, Q., Zhang, L., Liu, X., Ji, X., Wang, X., Wang, H., Li, A., 2024. Sewage sludge enhances cold-pressed pelletization and carbothermic reduction of steel plant sintering dust. J. Clean. Prod. 463, 142689. https://doi.org/10.1016/j.jclepro.2024.142689.

[3]

Dai, X.Q., Huo, Z.L., Wang, H.M., 2011. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Res. 121, 441-449. https://doi.org/10.1016/j.fcr.2011.01.016.

[4]

Du, Y.Y., Jiang, X.G., Ma, X.J., Tang, L.H., Wang, M.X., Lv, G.J., Jin, Y.Q., Wang, F., Chi, Y., Yan, J.H., 2014. Cogasification of biofermenting residue in a coal-water slurry gasifier. Energy Fuel. 28, 2054-2058. https://doi.org/10.1021/ef402477j.

[5]

Feng, Z., Wang, l., Liu, Y., Wei, J., He, Y., Yang, B., 2023. Comparison and research progress of disposal technologies of sintering machine head ash. Sintering and Pelletizing 48, 24-32. https://doi.org/10.13403/j.sjqt.2023.05.067.

[6]

Kurka, V., Jonsta, P., Kander, L., Kotasek, O., Pys, J., Klásková I., Noga, R., Vindys, M., Martynková G.S., 2022. The influence of varying thermal treatment conditions on reducing zinc content from a steelmaking and blast furnace sludge. Metals 12, 11. https://doi.org/10.3390/met12111961.

[7]

Lanzerstorfer, C., 2015. Application of air classification for improved recycling of sinter plant dust. Resour. Conserv. Recycl. 94, 66-71. https://doi.org/10.1016/j.resconrec.2014.11.013.

[8]

Legates, D.R., McCabe, G.J., 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35, 233-241. https://doi.org/10.1029/1998wr900018.

[9]

Ma, W.C., Liu, X., Ma, C., Gu, T.B., Chen, G.Y., 2022. BASIC: a comprehensive model for SOx formation mechanism and optimization in municipal solid waste (MSW) combustion. ACS Omega 7, 12. https://doi.org/10.1021/acsomega.0c03287.

[10]

Qin, L., Xu, Z., Zhao, B., Zou, C., Chen, W., Han, J., 2022. Kinetic study on hightemperature gasification of medical plastic waste coupled with hydrogen-rich syngas production catalyzed by steel-converter ash. J. Energy Inst. 102, 14-21. https://doi.org/10.1016/j.joei.2022.02.005.

[11]

Rahmatmand, B., Tahmasebi, A., Lomas, H., Honeyands, T., Koshy, P., Hockings, K., Jayasekara, A., 2023. A technical review on coke rate and quality in low-carbon blast furnace ironmaking. Fuel 336, 127077. https://doi.org/10.1016/j.fuel.2022.127077.

[12]

Robinson, R., 2005. High temperature properties of by-product cold bonded pellets containing blast furnace flue dust. Thermochim. Acta 432, 112-123. https://doi.org/10.1016/j.tca.2005.04.015.

[13]

Sibalija, T., Vidosav, M., 2015. Advanced multiresponse process optimization: an intelligent and integrated approach. https://doi.org/10.1007/978-3-319-19255-0.

[14]

Sibalija, T.V., 2019. Particle swarm optimisation in designing parameters of manufacturing processes: a review (2008-2018). Appl. Soft Comput. 84, 105743. https://doi.org/10.1016/j.asoc.2019.105743.

[15]

Singh, P.K., Kumar, A.L., Katiyar, P.K., Maurya, R., 2017. Agglomeration behaviour of steel plants solid waste and its effect on sintering performance. J. Mater. Res. Technol-JMRT 6, 289-296. https://doi.org/10.1016/j.jmrt.2016.11.005.

[16]

Wang, F.-Z., Shang, D.-C., Wang, M.-G., Hu, S.-G., Li, Y.-Q., 2016a. Incorporation and substitution mechanism of cadmium in cement clinker. J. Clean. Prod. 112, 2292-2299. https://doi.org/10.1016/j.jclepro.2015.09.127.

[17]

Wang, G., 2022. Basic research on resource-utilization of ferrous dust and municipal solid waste incineration fly ash through co-thermal treatment. https://doi.org/10.27661/d.cnki.gzhnu.2022.000812.

[18]

Wang, H., Zhou, T., Tan, X., Hu, N., Wang, Y., Yang, H., Zhang, M., 2024a. Experimental study on the sintering characteristics of biomass ash. Fuel 356, 129586. https://doi.org/10.1016/j.fuel.2023.129586.

[19]

Wang, J., Zeng, P., Liu, Z., Li, Y., 2023a. Manufacture of potassium chloride from cement kiln bypass dust: an industrial implementation case for transforming waste into valuable resources. Heliyon 9, e21806. https://doi.org/10.1016/j.heliyon.2023.e21806.

[20]

Wang, L., Jamro, I.A., Chen, Q., Li, S., Luan, J., Yang, T., 2016b. Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing. Waste Manag. Res. 34, 184-194. https://doi.org/10.1177/0734242x15617846.

[21]

Wang, S., Pan, H., Xiao, C., Zhao, Q., Wang, J., 2024b. Preparation and mix proportion optimization of red mud-fly ash-based cementitious material synergistic activated by carbide slag and MSWIFA. Construct. Build. Mater. 415, 135032. https://doi.org/10.1016/j.conbuildmat.2024.135032.

[22]

Wang, X., Wang, H., Zhang, Z., Li, J., Zhang, H., Wang, W., Mao, Y., Song, Z., 2023b. Calcination of sewage sludge-based sulphoaluminate cement clinker: mineral formation mechanism and heavy metal transition behaviors. Environ. Res. 237, 116986. https://doi.org/10.1016/j.envres.2023.116986.

[23]

Wang, X., Yang, D., Chen, S., 2023c. Particle swarm optimization based leader-follower cooperative control in multi-agent systems. Appl. Soft Comput., 111130 https://doi.org/10.1016/j.asoc.2023.111130.

[24]

Xiang, Y., Liang, D., Wang, X., Qian, Y., Pan, Q., Liu, G., Shen, D., 2023. Formation characteristics of gaseous pollutants during co-combustion process of steel smelting solid waste and waste incineration fly ash. Environ. Eng. 41, 197-205t106. https://doi.org/10.13205/j.hjgc.202312024.

[25]

Xiao, Y., Huang, Y., Cheng, H., Zhu, Z., Yu, M., Xu, W., Li, Z., Zuo, W., Zhou, H., Jin, B., 2024. Advances and outlook of heavy metal treatment technology from municipal solid waste incineration fly ash: a review. Energy Fuel. 38, 895-918. https://doi.org/10.1021/acs.energyfuels.3c04167.

[26]

Xing, X., Chen, Y., Liu, Y., 2018. Study of the reduction mechanism of ironsands with addition of blast furnace bag dust. Metallurgical Research & Technol. 115, 214. https://doi.org/10.1051/metal/2017097.

[27]

Yan, D., Peng, Z., Karstensen, K.H., Ding, Q., Wang, K., Wang, Z., 2014. Destruction of DDT wastes in two preheater/precalciner cement kilns in China. Sci. Total Environ. 476-477, 250-257. https://doi.org/10.1016/j.scitotenv.2014.01.009.

[28]

Zhou, Y., Zhu, R., Wei, G., 2022. Recent advancements in source reduction and recycling technologies for converter dust. Energy Rep. 8, 7274-7285. https://doi.org/10.1016/j.egyr.2022.05.234.

[29]

Zhuang, Q.Y., Zhou, R., Li, G.S., Zhang, Y.H., Xiong, X.L., Geng, S.H., Zou, X.L., Cheng, H.W., Zhang, Y.W., Xu, Q., Zhu, K., Lu, X.G., 2022. Synergistic preparation of metalized pellets using stainless-steel pickling sludge and blast-furnace bag dust. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 53, 1564-1582. https://doi.org/10.1007/s11663-022-02466-w.

[30]

Zou, C., Wu, H., Zhao, J., Li, X., 2018. Effects of dust collection from converter steelmaking process on combustion characteristics of pulverized coal. Powder Technol. 332. https://doi.org/10.1016/j.powtec.2018.03.012.

AI Summary AI Mindmap
PDF (3485KB)

250

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/