Catalytic pyrolysis of biomass waste using montmorillonite-supported ultrafine iron nanoparticles for enhanced bio-oil yield and quality

Wenfei Cai , Xiefei Zhu , Reeti Kumar , Zhi Zhu , Jian Ye , Jun Zhao

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100085

PDF (3075KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100085 DOI: 10.1016/j.gerr.2024.100085
Research Articles
research-article

Catalytic pyrolysis of biomass waste using montmorillonite-supported ultrafine iron nanoparticles for enhanced bio-oil yield and quality

Author information +
History +
PDF (3075KB)

Abstract

The catalytic fast pyrolysis process is a promising method for converting biomass waste into bio-oil, where the catalyst plays a crucial role in determining the yield and quality of the products. In this study, ultrafine iron nanoparticles were incorporated onto a montmorillonite substrate through the pyrolyzing coordinated polymer method to enhance liquid fuel production via catalytic pyrolysis of biomass waste. The catalyst showed a uniform distribution of iron on the montmorillonite surface, indicating that the incorporation was successful. Catalytic pyrolysis led to an increase in liquid yields and a decrease in gas product yields compared to direct pyrolysis. The highest bio-oil yield obtained was 56.9% during the catalytic pyrolysis of corncob, which was found to be particularly well-suited for the production of bio-oil. Furthermore, the proposed reaction pathway was based on identifying the composition of the bio-oil, which was further supported by quantum chemical calculations of chemical bond strength and the likelihood of free radical attacks. These findings demonstrate the potential of using montmorillonite-supported ultrafine iron nanoparticles to enhance bio-oil yield and quality in biomass pyrolysis processes.

Keywords

Catalytic fast pyrolysis / Biomass / Biorefinery / Bio-oil / Montmorillonite

Cite this article

Download citation ▾
Wenfei Cai, Xiefei Zhu, Reeti Kumar, Zhi Zhu, Jian Ye, Jun Zhao. Catalytic pyrolysis of biomass waste using montmorillonite-supported ultrafine iron nanoparticles for enhanced bio-oil yield and quality. Green Energy and Resources, 2024, 2(3): 100085 DOI:10.1016/j.gerr.2024.100085

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Wenfei Cai: Writing - original draft, Visualization, Methodology, Investigation, Formal analysis, Conceptualization. Xiefei Zhu: Writing - review & editing, Validation, Resources, Formal analysis. Reeti Kumar: Validation, Software, Resources, Formal analysis. Zhi Zhu: Validation, Software, Resources. Jian Ye: Validation, Software, Resources. Jun Zhao: Writing - review & editing, Writing - original draft, Supervision, Project administration, Methodology, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Hong Kong Innovation and Technology Fund (PRP/044/19FX) and Environment and Conservation Fund (Ref. 2021–09, 2022–127).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gerr.2024.100085.

References

[1]

Ariöz, E., Kurtul, B., Koçkar, Ö. M., 2022. Catalytic fast pyrolysis of safflower biomass for synthetic bio-oil production. Int. J. Energy a Clean Environ. (IJECE) 23 (1), 53-62.

[2]

Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57-63.

[3]

Borgnino, L., Avena, M., De Pauli, C., 2009. Synthesis and characterization of Fe (III)- montmorillonites for phosphate adsorption. Colloids Surf. A Physicochem. Eng. Asp. 341 (1-3), 46-52.

[4]

Borsella, E., Aguado, R., De Stefanis, A., Olazar, M., 2018. Comparison of catalytic performance of an iron-alumina pillared montmorillonite and HZSM-5 zeolite on a spouted bed reactor. J. Anal. Appl. Pyrol. 130, 320-331.

[5]

Cai, W., Dai, L., Liu, R., 2018. Catalytic fast pyrolysis of rice husk for bio-oil production. Energy 154, 477-487.

[6]

Cai, W., Wang, X., Zhu, Z., Kumar, R., Nana Amaniampong, P., Zhao, J., Hu, Z.-T., 2023. Synergetic effects in the co-pyrolysis of lignocellulosic biomass and plastic waste for renewable fuels and chemicals. Fuel 353, 129210-129222.

[7]

Cheng, Z., Yang, B., Chen, Q., Gao, X., Tan, Y., Ma, Y., Shen, Z., 2018. A Quantitative- Structure-Activity-Relationship (QSAR) model for the reaction rate constants of organic compounds during the ozonation process at different temperatures. Chem. Eng. J. 353, 288-296.

[8]

Duan, D., Feng, Z., Zhang, Y., Zhou, T., Xu, Z., Wang, Q., Zhao, Y., Wang, C., Ruan, R., 2022. Corncob pyrolysis: improvement in hydrocarbon group types distribution of bio oil from co-catalysis over HZSM-5 and activated carbon. Waste Manag. 141, 8-15.

[9]

Ellison, C.R., Boldor, D., 2021. Mild upgrading of biomass pyrolysis vapors via ex-situ catalytic pyrolysis over an iron-montmorillonite catalyst. Fuel 291, 120226-120236.

[10]

Fida, H., Zhang, G., Guo, S., Naeem, A., 2017. Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. J. Colloid Interface Sci. 490, 859-868.

[11]

Hayati-Ashtiani, M., 2011. Characterization of nano-porous bentonite (montmorillonite) particles using FTIR and BET-BJH analyses. Part. Part. Syst. Char. 28 (3-4), 71-76.

[12]

He, Y., Zhao, Y., Chai, M., Zhou, Z., Sarker, M., Li, C., Liu, R., Cai, J., Liu, X., 2020. Comparative study of fast pyrolysis, hydropyrolysis and catalytic hydropyrolysis of poplar sawdust and rice husk in a modified Py-GC/MS microreactor system: insights into product distribution, quantum description and reaction mechanism. Renew. Sustain. Energy Rev. 119, 109604-109618.

[13]

Hong, W., Chen, J., Ding, Q., Gao, Y., Ye, L., Yin, Y., Tu, S., 2021. Efficient thermochemical liquefaction of microalgae Haematococcus pluvialis for production of high quality biocrude with high selectivity over Fe/montmorillonite catalyst. J. Energy Inst. 97, 73-79.

[14]

Hong, W., Zhang, Y., Song, J., Liu, H., Zhang, L., Wang, H., Zhang, Y., Jiang, H., 2023. Efficient preparation of phenol-enriched bio-oil using cobalt-modified montmorillonite K-10 catalyst. J. Anal. Appl. Pyrol. 170, 105895-105903.

[15]

Jia, L., Shen, Z., Su, P., 2016. Relationship between reaction rate constants of organic pollutants and their molecular descriptors during Fenton oxidation and in situ formed ferric-oxyhydroxides. J. Environ. Sci. 43, 257-264.

[16]

Jiang, H., Hong, W., Zhang, Y., Deng, S., Chen, J., Yang, C., Ding, H., 2020. Behavior, kinetic and product characteristics of the pyrolysis of oil shale catalyzed by cobaltmontmorillonite catalyst. Fuel 269, 117468-117478.

[17]

Kadu, B.S., Sathe, Y.D., Ingle, A.B., Chikate, R.C., Patil, K.R., Rode, C.V., 2011. Efficiency and recycling capability of montmorillonite supported Fe-Ni bimetallic nanocomposites towards hexavalent chromium remediation. Appl. Catal. B Environ. 104 (3), 407-414.

[18]

Kan, T., Strezov, V., Evans, T., He, J., Kumar, R., Lu, Q., 2020. Catalytic pyrolysis of lignocellulosic biomass: a review of variations in process factors and system structure. Renew. Sustain. Energy Rev. 134, 110305-110329.

[19]

Karod, M., Hubble, A.H., Maag, A.R., Pollard, Z.A., Goldfarb, J.L., 2022. Clay-catalyzed in situ pyrolysis of cherry pits for upgraded biofuels and heterogeneous adsorbents as recoverable by-products. Biomass Conversion and Biorefinery 1-13.

[20]

Kombaya-Touckia-Linin, E.-M., Gaucel, S., Sougrati, M.T., Khederlou, K., Pen, N., Stievano, L., Gontard, N., Guillard, V., 2019. Hybrid iron montmorillonite nanoparticles as an oxygen scavenger. Chem. Eng. J. 357, 750-760.

[21]

Kumar, M., Upadhyay, S., Mishra, P., 2020. Effect of Montmorillonite clay on pyrolysis of paper mill waste. Bioresour. Technol. 307, 123161-123174.

[22]

Kwon, G., Cho, D.-W., Kwon, E.E., Rinklebe, J., Wang, H., Song, H., 2022. Beneficial use of Fe-impregnated bentonite as a catalyst for pyrolysis of grass cut into syngas, bio-oil and biochar. Chem. Eng. J. 448, 137502-137511.

[23]

Li, K., Lei, J., Yuan, G., Weerachanchai, P., Wang, J.-Y., Zhao, J., Yang, Y., 2017. Fe-, Ti-, Zr-and Al-pillared clays for efficient catalytic pyrolysis of mixed plastics. Chem. Eng. J. 317, 800-809.

[24]

Liu, R., Sarker, M., Rahman, M.M., Li, C., Chai, M., Cotillon, R., Scott, N.R., 2020. Multiscale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production-A review. Prog. Energy Combust. Sci. 80, 100852-100886.

[25]

Lu, T., Chen, F., 2012. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33 (5), 580-592.

[26]

Mahfud, M., Qadariyah, L., Haqqyana, H., Aswie, V., 2024. OPTIMIZATION BIO-oil PRODUCTION FROM chlorella sp. THROUGH MICROWAVE-ASSISTED PYROLYSIS USING RESPONSE SURFACE METHODOLOGY. Green Energy and Resources, 100057.

[27]

Mankar, A.R., Pandey, A., Modak, A., Pant, K.K., 2021. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour. Technol. 334, 125235-125247.

[28]

Miao, F., Luo, Z., Zhou, Q., Du, L., Zhu, W., Wang, K., Zhou, J., 2023. Study on the reaction mechanism of C8t aliphatic hydrocarbons obtained directly from biomass by hydropyrolysis vapor upgrading. Chem. Eng. J. 464, 142639-142653.

[29]

Persson, H., Yang, W., 2019. Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel 252, 200-209.

[30]

Rahman, M.H., Bhoi, P.R., Saha, A., Patil, V., Adhikari, S., 2021. Thermo-catalytic copyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid. Energy 225, 120231-120244.

[31]

Ravikumar, C., Kumar, P.S., Subhashni, S., Tejaswini, P., Varshini, V., 2017. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: experimental investigation on bio-oil yield and high heating values. Sustainable materials and technologies 11, 19-27.

[32]

Saikia, P.K., Sarmah, P.P., Borah, B.J., Saikia, L., Saikia, K., Dutta, D.K., 2016. Stabilized Fe3O4 magnetic nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer-Villiger oxidation under solvent free conditions. Green Chem. 18 (9), 2843-2850.

[33]

Sewu, D.D., Lee, D.S., Tran, H.N., Woo, S.H., 2019. Effect of bentonite-mineral copyrolysis with macroalgae on physicochemical property and dye uptake capacity of bentonite/biochar composite. J. Taiwan Inst. Chem. Eng. 104, 106-113.

[34]

Sulman, M., Kosivtsov, Y., Sulman, E., Alfyorov, V., Lugovoy, Y., Molchanov, V., Tyamina, I., Misnikov, O., Afanasjev, A., Kumar, N., 2009. Influence of aluminosilicate materials on the peat low-temperature pyrolysis and gas formation. Chem. Eng. J. 154 (1-3), 355-360.

[35]

Tran, M.L., Deng, S.-W., Fu, C.-C., Juang, R.-S., 2020. Efficient removal of antibiotic oxytetracycline from water using optimized montmorillonite-supported zero-valent iron nanocomposites. Environ. Sci. Pollut. Control Ser. 27, 30853-30867.

[36]

Veses, A., Aznar, M., López, J., Callén, M., Murillo, R., García, T., 2015. Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel 141, 17-22.

[37]

Wan, Z., Wang, S., Li, Z., Yi, W., Zhang, A., Li, Y., Zhang, P., 2022. Co-pyrolysis of lignin and spent bleaching clay: insight into the catalytic characteristic and hydrogen supply of spent bleaching clay. J. Anal. Appl. Pyrol. 163, 105491-105501.

[38]

Wang, K., Tester, J.W., 2023. Sustainable management of unavoidable biomass wastes. Green Energy and Resources 1 (1), 100005.

[39]

Wang, X., Du, Y., Luo, J., 2008. Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology 19 (6), 65707-65715.

[40]

Wu, X., Luo, N., Xie, S., Zhang, H., Zhang, Q., Wang, F., Wang, Y., 2020. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 49 (17), 6198-6223.

[41]

Xia, S., Yang, H., Lu, W., Cai, N., Xiao, H., Chen, Y., Chen, H., 2023. Iron salt catalytic pyrolysis of biomass: influence of iron salt type. Energy 262, 125415-125423.

[42]

Xiong, Y., Sun, W., Xin, P., Chen, W., Zheng, X., Yan, W., Zheng, L., Dong, J., Zhang, J., Wang, D., 2020. Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 32 (34), 2000896-2000904.

[43]

Xu, F., Deng, S., Xu, J., Zhang, W., Wu, M., Wang, B., Huang, J., Yu, G., 2012. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ. Sci. Technol. 46 (8), 4576-4582.

[44]

Yahya, S., Wahab, S.K.M., Harun, F.W., 2020. Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K 10 by response surface methodology. Renew. Energy 157, 164-172.

[45]

Yamashita, T., Hayes, P., 2008. Analysis of XPS spectra of Fe2t and Fe3t ions in oxide materials. Appl. Surf. Sci. 254 (8), 2441-2449.

[46]

Yang, B., Cheng, Z., Tang, Q., Shen, Z., 2018. Nitrogen transformation of 41 organic compounds during SCWO: a study on TN degradation rate, N-containing species distribution and molecular characteristics. Water Res. 140, 167-180.

[47]

Ye, G., Deng, H., Zhou, S., Gao, Y., Yan, C., 2022. Coupling humic acid in Fe-bearing montmorillonite for enhanced adsorption and catalytic degradation of tetracycline. Environ. Sci. Pollut. Control Ser. 29 (60), 90984-90994.

[48]

Zeng, Z., Tian, X., Wang, Y., Cui, X., Zhang, Q., Dai, L., Liu, Y., Zou, R., Chen, J., Liu, J., Ruan, R., 2021. Microwave-assisted catalytic pyrolysis of corn cobs with Fe-modified Choerospondias axillaris seed-based biochar catalyst for phenol-rich bio-oil. J. Anal. Appl. Pyrol. 159, 105306-105314.

[49]

Zhang, H., Liu, G., Shi, L., Ye, J., 2018. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8 (1), 1701343-1701367.

[50]

Zhang, S.-S., Yang, N., Zhuang, X., Ren, L., Natarajan, V., Cui, Z., Si, H., Xin, X., Ni, S.-Q., Zhan, J., 2019. Montmorillonite immobilized Fe/Ni bimetallic prepared by dry in-situ hydrogen reduction for the degradation of 4-Chlorophenlo. Sci. Rep. 9 (1), 13388-13397.

[51]

Zhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xie, H., Brindhadevi, K., Pugazhendhi, A., Xia, C., 2023. A review of biomass pyrolysis gas: forming mechanisms, influencing parameters, and product application upgrades. Fuel 347, 128461-128471.

[52]

Zhou, J., Wu, P., Dang, Z., Zhu, N., Li, P., Wu, J., Wang, X., 2010. Polymeric Fe/Zr pillared montmorillonite for the removal of Cr(VI) from aqueous solutions. Chem. Eng. J. 162 (3), 1035-1044.

AI Summary AI Mindmap
PDF (3075KB)

423

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/