Calcium looping for CO2 capture and thermochemical heat storage, a potential technology for carbon neutrality: A review

Youhao Zhang , Yuzhuo Wang , Kuihua Han , Jianli Zhao , Jun Jie Wu , Yingjie Li

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100078

PDF (6200KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100078 DOI: 10.1016/j.gerr.2024.100078
Reviews
research-article

Calcium looping for CO2 capture and thermochemical heat storage, a potential technology for carbon neutrality: A review

Author information +
History +
PDF (6200KB)

Abstract

CO2 emissions have posed numerous global challenges, leading to an increasing consensus on the need for carbon neutrality in future development. CO2 capture and energy storage technologies represent a critical step in the carbon neutrality journey. Calcium looping (CaL), a promising technology for both CO2 capture and energy storage, holds significant potential in future carbon neutral technology strategies. In this paper, a comprehensive review of the application of CaL in CO2 capture and thermochemical heat storage (TCHS) is offered to inform further advancements in this field. Firstly, a brief overview and analysis of the fundamental technical routes and principles underlying of CaL for CO2 capture and TCHS are provided. Then, the research progress in the development of CaL-integrated systems for CO2 capture and TCHS is subsequently reviewed, with the existing limitations and outlining future prospects for further development highlighted. Additionally, a comprehensive summary of the proposed improvements in the performance of calcium-based materials is presented, focusing on enhancing carbonation reactivity in the multiple cycles and improving sunlight absorption performance of calcium-based materials. Finally, based on the current status of CaL development, insights and perspectives on potential avenues for further technological advancement are offered. Solar-driven CaL is a promising avenue for future CaL development, calling for greater research efforts on optimizing relevant equipment and enhancing calcium-based materials for sunlight-driven CaL systems. In addition, the CO2 in-situ conversion in the calcination stage of CaL is also a great potential direction for technological evolution.

Keywords

Calcium looping / CO2 capture / Thermochemical heat storage / Carbon neutrality

Cite this article

Download citation ▾
Youhao Zhang,Yuzhuo Wang,Kuihua Han,Jianli Zhao,Jun Jie Wu,Yingjie Li. Calcium looping for CO2 capture and thermochemical heat storage, a potential technology for carbon neutrality: A review. Green Energy and Resources, 2024, 2(3): 100078 DOI:10.1016/j.gerr.2024.100078

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Youhao Zhang: Investigation, Data Curation, Writing - Original Draft, Visualization. Yuzhuo Wang: Data Curation, Validation, Investigation. Kuihua Han: Resources, Data Curation. Jianli Zhao: Formal analysis. Jun Jie Wu: Resources. Yingjie Li: Conceptualization, Writing - Review & Editing, Supervision, Methodology.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (52276204).

References

[1]

Ahmad, K.N., Samidin, S., Rosli, M.I., et al., 2023. Alkaline earth metal modified nickel nanoparticles supported on exfoliated g-C3N4 for atmospheric CO2 methanation. J. Environ. Chem. Eng. 11 (6), 111109.

[2]

Alonso, M., Rodríguez, N., González, B., et al., 2010. Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development. Int. J. Greenh. Gas Control 4, 167-173.

[3]

Alovisio, A., Chacartegui, R., Ortiz, C., et al., 2017. Optimizing the CSP-calcium looping integration for thermochemical energy storage. Energy Convers. Manag. 136, 85-98.

[4]

Amirkhani, F., Dashti, A., Jokar, M., et al., 2023. Estimation of CO2 solubility in aqueous solutions of commonly used blended amines: application to optimised greenhouse gas capture. J. Clean. Prod. 430, 139435.

[5]

Anthony, E.J., 2008. Solid looping cycles: a new technology for coal conversion. Ind. Eng. Chem. Res. 47, 1747-1754.

[6]

Antzara, A.N., Arregi, A., Heracleous, E., et al., 2018. In-depth evaluation of a ZrO2 promoted CaO-based CO2 sorbent in fluidized bed reactor tests. Chem. Eng. J. 333, 697-711.

[7]

Aref, A.H., Shahhosseini, S., 2023. Experimental investigation of carbon dioxide absorption by amine-based nanofluids containing two-dimensional hexagonal boron nitride nanostructures. Gas Sci. Eng. 111.

[8]

Arias, B., Diego, M.E., Abanades, J.C., et al., 2013. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot. Int. J. Greenh. Gas Control 18, 237-245.

[9]

Armutlulu, A., Naeem, M.A., Liu, H.J., et al., 2017. Multishelled CaO microspheres stabilized by atomic layer deposition of Al2O3 for enhanced CO2 capture performance. Adv. Mater. 29, 1702896.

[10]

Atsonios, K., Grammelis, P., Antiohos, S.K., et al., 2015. Integration of calcium looping technology in existing cement plant for CO2 capture: process modeling and technical considerations. Fuel 153, 210-223.

[11]

Bai, S.B., Sun, J., Zhou, Z.J., et al., 2021. Structurally improved, TiO2-incorporated, CaObased pellets for thermochemical energy storage in concentrated solar power plants. Sol. Energy Mater. Sol. Cells 226, 111076.

[12]

Bailera, M., Lisbona, P., Romeo, L.M., et al., 2020. Calcium looping as chemical energy storage in concentrated solar power plants: carbonator modelling and configuration assessment. Appl. Therm. Eng. 172, 115186.

[13]

Barelli, L., Bidini, G., Corradetti, A., et al., 2007. Study of the carbonation-calcination reaction applied to the hydrogen production from syngas. Energy 32, 697-710.

[14]

Basumatary, S.F., Brahma, S., Hoque, M., et al., 2023. Advances in CaO-based catalysts for sustainable biodiesel synthesis. Green Energy and Resources 1, 100032.

[15]

Bayon, A., Bader, R., Jafarian, M., et al., 2018. Techno-economic assessment of solid-gas thermochemical energy storage systems for solar thermal power applications. Energy 149, 473-484.

[16]

Baamran, K., Lawson, S., Rownaghi, A.A., et al., 2023. Reactive capture and conversion of CO2 into hydrogen over bifunctional structured Ce1-xCoxNiO3/Ca perovskite-type oxide monoliths. Jacs Au 4 (1), 101-115.

[17]

Benitez-Guerrero, M., Valverde, J.M., Sanchez-Jimenez, P.E., et al., 2018. Calcium- Looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture. Chem. Eng. J. 334, 2343-2355.

[18]

Bian, Z.G., Li, Y.J., Ren, Y., et al., 2022. Thermochemical heat storage performance of CaO particles under fluidization in coupled CaO/Ca(OH)2 cycles and CaO/CaCO3 cycles. J. Energy Storage 56, 106045.

[19]

Cannone, S.F., Stendardo, S., Lanzini, A., 2020. Solar-powered rankine cycle assisted by an innovative calcium looping process as an energy storage system. Ind. Eng. Chem. Res. 59, 6977-6993.

[20]

Chacartegui, R., Alovisio, A., Ortiz, C., et al., 2016. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle. Appl. Energy 173, 589-605.

[21]

Chang, M.H., Chen, W.C., Huang, C.M., et al., 2014. Design and experimental testing of a 1.9MWth calcium looping pilot plant. Energy Proc. 63, 2100-2108.

[22]

Chang, M.H., Huang, C.M., Liu, W.H., et al., 2013. Design and experimental investigation of the calcium looping process for 3-kWth and 1.9-MWth facilities. Chem. Eng. Technol. 36, 1525-1532.

[23]

Charitos, A., Hawthorne, C., Bidwe, A.R., et al., 2010a. Hydrodynamic analysis of a 10 kWth calcium looping dual fluidized bed for post-combustion CO2 capture. Powder Technol. 200, 117-127.

[24]

Charitos, A., Hawthorne, C., Bidwe, A.R., et al., 2010b. Parametric investigation of the calcium looping process for CO2 capture in a 10 kWth dual fluidized bed. Int. J. Greenh. Gas Control 4, 776-784.

[25]

Chen, H., Zhao, C., Yang, Y., et al., 2012a. CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation. Appl. Energy 91, 334-340.

[26]

Chen, H.C., Zhao, C.S., 2011. Development of a CaO-based sorbent with improved cyclic stability for CO2 capture in pressurized carbonation. Chem. Eng. J. 171, 197-205.

[27]

Chen, H.C., Zhao, C.S., Chen, M.L., et al., 2011. CO2 uptake of modified calcium-based sorbents in a pressurized carbonation-calcination looping. Fuel Process. Technol. 92, 1144-1151.

[28]

Chen, H.C., Zhao, C.S., Yang, Y.M., et al., 2012b. Attrition and cyclic CO2 capture of CaO pellets with aluminates under pressurized carbonation. Cleaner Combustion and Sustainable World 896-900.

[29]

Chen, J., Donat, F., Duan, L., et al., 2021. Metal-oxide stabilized CaO/CuO composites for the integrated Ca/Cu looping process. Chem. Eng. J. 422, 130024.

[30]

Chen, J., Duan, L., Sun, Z., 2020a. Review on the development of sorbents for calcium looping. Energy Fuel. 34, 7806-7836.

[31]

Chen, J., Duan, L., Ma, Y., 2023. Recent progress in calcium looping integrated with chemical looping combustion (CaL-CLC) using bifunctional CaO/CuO composites for CO 2 capture: a state-of-the-art review. Fuel 334, 126630.

[32]

Chen, S.Y., Xiang, W.G., Wang, D., et al., 2012c. Incorporating IGCC and CaO sorptionenhanced process for power generation with CO2 capture. Appl. Energy 95, 285-294.

[33]

Chen, S.Z., Dai, J.Z., Qin, C.L., et al., 2022. Adsorption and desorption equilibrium of Li4SiO4-based sorbents for high-temperature CO2 capture. Chem. Eng. J. 429, 132236.

[34]

Chen, X.Y., Jin, X.G., Ling, X., et al., 2020b. Exergy analysis of concentrated solar power plants with thermochemical energy storage based on calcium looping. ACS Sustainable Chem. Eng. 8, 7928-7941.

[35]

Chen, X.Y., Jin, X.G., Ling, X., et al., 2020c. Indirect integration of thermochemical energy storage with the recompression supercritical CO 2 Brayton cycle. Energy 209, 118452.

[36]

Choi, D., Noh, S., Park, Y., 2023. Enhancing solar absorption and reversibility in calcium looping-based energy storage via salt-promoted CaO. Chem. Eng. J. 470, 144036.

[37]

Chu, Z.W., Li, Y.J., Zhang, C.X., et al., 2023. Process analysis of H2 production from pyrolysis-CO 2 gasification-water gas shift for oil sludge based on calcium looping. Fuel 342, 127916.

[38]

Cotton, A., Finney, K.N., Patchigolla, K., et al., 2014. Quantification of trace element emissions from low-carbon emission energy sources: (I) Ca-looping cycle for postcombustion CO2 capture and (II) fixed bed, air blown down-draft gasifier. Chem. Eng. Sci. 107, 13-29.

[39]

Da, Y., Xuan, Y.M., Teng, L., et al., 2020. Calcium-based composites for direct solarthermal conversion and thermochemical energy storage. Chem. Eng. J. 382, 122815.

[40]

Da, Y., Zhou, J.L., 2022. Multi-doping strategy modified calcium-based materials for improving the performance of direct solar-driven calcium looping thermochemical energy storage. Sol. Energy Mater. Sol. Cells 238, 111613.

[41]

Da, Y., Zhou, J.L., 2023. Microscopic mechanisms of Mn-doped CaCO3 heat carrier with enhanced optical absorption and accelerated decomposition kinetics for directly storing solar energy. Sol. Energy Mater. Sol. Cells 250, 112103.

[42]

Da, Y., Zhou, J.L., Zeng, F.D., 2023. Calcium-based composites directly irradiated by solar spectrum for thermochemical energy storage. Chem. Eng. J. 456, 140986.

[43]

Derevschikov, V., Semeykina, V., Bitar, J., et al., 2017. Template technique for synthesis of CaO-based sorbents with designed macroporous structure. Microporous Mesoporous Mater. 238, 56-61.

[44]

Desage, L., McCabe, E., Vieira, A.P., et al., 2023. Thermochemical batteries using metal carbonates: a review of heat storage and extraction. J. Energy Storage 71, 107901.

[45]

Di Giuliano, A., Gallucci, K., 2018. Sorption enhanced steam methane reforming based on nickel and calcium looping: a review. Chem. Eng. Process 130, 240-252.

[46]

Dieter, H., Bidwe, A.R., Varela-Duelli, G., et al., 2014. Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK. University of Stuttgart. Fuel 127, 23-37.

[47]

Edwards, S.E.B., Materic, V., 2012. Calcium looping in solar power generation plants. Sol. Energy 86, 2494-2503.

[48]

Esmaili, E., Mostafavi, E., Mahinpey, N., 2016. Economic assessment of integrated coal gasification combined cycle with sorbent CO2 capture. Appl. Energy 169, 341-352.

[49]

Fang, F., Li, Z.S., Cai, N.S., 2009. Continuous CO2 capture from flue gases using a dual fluidized bed reactor with calcium-based sorbent. Ind. Eng. Chem. Res. 48, 11140-11147.

[50]

Fu, J.L., Pu, H., Guo, Y.F., et al., 2023. Integrating calcium-looping and reverse-water-gasshift reaction for CO2 capture and conversion: screening of optimum catalyst. Sep. Purif. Technol. 327, 124991.

[51]

Funayama, S., Takasu, H., Kim, S.T., et al., 2020. Thermochemical storage performance of a packed bed of calcium hydroxide composite with a silicon-based ceramic honeycomb support. Energy 201, 117673.

[52]

Gao, W.L., Liang, S.Y., Wang, R.J., et al., 2020. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 49, 8584-8686.

[53]

Grasa, G., Murillo, R., Alonso, M., et al., 2009. Application of the random pore model to the carbonation cyclic reaction. AlChE J 55, 1246-1255.

[54]

Guo, H., Kou, X., Zhao, Y., et al., 2018. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: textural properties, electron donation, and oxygen vacancy. Chem. Eng. J. 334, 237-246.

[55]

Guo, S., Tian, X., Xu, Y., et al., 2023a. Ca/Co-based composites with improved cyclic stability and optical absorption for advanced thermochemical energy storage systems. Chem. Eng. J. 468, 143691.

[56]

Guo, Y.F., Wang, G.D., Yu, J., et al., 2023b. Tailoring the performance of Ni-CaO dual function materials for integrated CO2 capture and conversion by doping transition metal oxides. Sep. Purif. Technol. 305, 122455.

[57]

Han, R., Wang, Y., Xing, S., et al., 2022. Progress in reducing calcination reaction temperature of Calcium-Looping CO 2 capture technology: a critical review. Chem. Eng. J. 450, 137952.

[58]

Hanak, D.P., Michalski, S., Manovic, V., 2018. From post-combustion carbon capture to sorption-enhanced hydrogen production: a state-of-the-art review of carbonate looping process feasibility. Energy Convers. Manag. 177, 428-452.

[59]

Haran, S., Rao, A.B., Banerjee, R., 2021. Techno-economic analysis of a 660 MWth supercritical coal power plant in India retrofitted with calcium looping (CaL) based CO2 capture system. Int. J. Greenh. Gas Control 112, 103522.

[60]

Hawthorne, C., Dieter, H., Bidwe, A., et al., 2011. CO 2 capture with CaO in a 200 kWth dual fluidized bed pilot plant. Energy Proc. 4, 441-448.

[61]

He, Y.L., Qiu, Y., Wang, K., et al., 2020. Perspective of concentrating solar power. Energy 198, 117373.

[62]

He, Y.L., Wang, W.Q., Jiang, R., et al., 2022. Liquid-based high-temperature receiver technologies for next-generation concentrating solar power: a review of challenges and potential solutions. Front. Energy 17, 16-42.

[63]

Hu, J.W., Hongmanorom, P., Chen, J.M., et al., 2023. Tandem distributing Ni into CaO framework for isothermal integration of CO 2 capture and conversion. Chem. Eng. J. 452, 139460.

[64]

Hu, J.W., Hongmanorom, P., Chirawatkul, P., et al., 2021a. Efficient integration of CO 2 capture and conversion over a Ni supported CeO2-modified CaO microsphere at moderate temperature. Chem. Eng. J. 426, 130864.

[65]

Hu, J.W., Hongmanorom, P., Galvita, V.V., et al., 2021b. Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming. Appl. Catal., B 284, 119734.

[66]

Hu, Y., Liu, W., Peng, Y., et al., 2017. One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique. Fuel Process. Technol. 160, 70-77.

[67]

Hu, Y.C., Lu, H.Y., Liu, W.Q., et al., 2020. Incorporation of CaO into inert supports for enhanced CO 2 capture: a review. Chem. Eng. J. 396, 125253.

[68]

Huang, C.M., Hsu, H.W., Liu, W.H., et al., 2011. Development of post-combustion CO 2 capture with CaO/CaCO 3 looping in a bench scale plant. Energy Proc. 4, 1268-1275.

[69]

Huang, J., Li, X., Wang, X., et al., 2019. New insights into CO2 methanation mechanisms on Ni/MgO catalysts by DFT calculations: elucidating Ni and MgO roles and support effects. J. CO2 Util. 33, 55-63.

[70]

Huang, L., Zhang, Y., Gao, W.L., et al., 2017. Alkali carbonate molten salt coated calcium oxide with highly improved carbon dioxide capture capacity. Energy Technol. 5, 1328-1336.

[71]

Huang, X.K., Ma, X.T., Li, J., et al., 2023. Preparation of morph-genetic aluminum-doped calcium oxide templated from cotton and the calcium looping performance for energy storage in the presence of steam. J. Energy Storage 72, 108325.

[72]

Hughes, R.W., Lu, D.Y., Anthony, E.J., et al., 2005. Design, process simulation and construction of an atmospheric dual fluidized bed combustion system for in situ CO2 capture using high-temperature sorbents. Fuel Process. Technol. 86, 1523-1531.

[73]

Imani, M., Tahmasebpoor, M., Sánchez-Jiménez, P.E., 2023. Metal- based eggshell particles prepared via successive incipient wetness impregnation method as a promoted sorbent for CO2 capturing in the calcium looping process. J. Environ. Chem. Eng. 11, 110584.

[74]

Jin, S., Ko, K.J., Song, Y.G., et al., 2019. Fabrication and kinetic study of spherical MgO agglomerates via water-in-oil method for pre-combustion CO2 capture. Chem. Eng. J. 359, 285-297.

[75]

Jing, J.Y., Li, T.Y., Zhang, X.W., et al., 2017. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism. Appl. Energy 199, 225-233.

[76]

Jing, J.Y., Liu, L., Xu, K., et al., 2023. Improved hydrogen production performance of Ni- Al2O3/CaO-CaZrO3 composite catalyst for CO2 sorption enhanced CH4/H2O reforming. Int. J. Hydrogen Energy 48, 2558-2570.

[77]

Karagiannakis, G., Pagkoura, C., Zygogianni, A., et al., 2014. Monolithic ceramic redox materials for thermochemical heat storage applications in CSP plants. Energy Proc. 49, 820-829.

[78]

Karasavvas, E., Panopoulos, K.D., Papadopoulou, S., et al., 2020. Energy and exergy analysis of the integration of concentrated solar power with calcium looping for power production and thermochemical energy storage. Renew. Energy 154, 743-753.

[79]

Khare, S., Dell'Amico, M., Knight, C., et al., 2013. Selection of materials for high temperature sensible energy storage. Sol. Energy Mater. Sol. Cells 115, 114-122.

[80]

Khosa, A.A., Yan, J., Zhao, C.Y., 2021. Investigating the effects of ZnO dopant on the thermodynamic and kinetic properties of CaCO3/CaO TCES system. Energy 215, 119132.

[81]

Khosravi, S., Hossainpour, S., Farajollahi, H., et al., 2022. Integration of a coal fired power plant with calcium looping CO 2 capture and concentrated solar power generation: energy, exergy and economic analysis. Energy 240, 122466.

[82]

Kim, S.M., Armutlulu, A., Kierzkowska, A.M., et al., 2019. Inverse opal-like, Ca3Al2O6- stabilized, CaO-based CO2 sorbent: stabilization of a highly porous structure to improve its cyclic CO2 uptake. ACS Appl. Energy Mater. 2, 6461-6471.

[83]

Kinoshita, C.M., Turn, S.Q., 2003. Production of hydrogen from bio-oil using CaO as a CO2 sorbent. Int. J. Hydrogen Energy 28, 1065-1071.

[84]

Krödel, M., Abduly, L., Nadjafi, M., et al., 2023. Structure of Na species in promoted CaObased sorbents and their effect on the rate and extent of the CO2 uptake. Adv. Funct. Mater. 33, 2302916.

[85]

Langerova, E., Matuska, T., 2023. One-dimensional modelling of sensible heat storage tanks with immersed helical coil heat exchangers: a critical review. J. Energy Storage 72, 108507.

[86]

Lasheras, A., Ströhle, J., Galloy, A., et al., 2011. Carbonate looping process simulation using a 1D fluidized bed model for the carbonator. Int. J. Greenh. Gas Control 5, 686-693.

[87]

Law, Z.X., Pan, Y.T., Tsai, D.H., 2022. Calcium looping of CO 2 capture coupled to syngas production using Ni-CaO-based dual functional material. Fuel 328, 125202.

[88]

Law, Z.X., Tsai, D.H., 2023. Efficient calcium looping-integrated methane dry reforming by dual functional aerosol Ca-Ni-Ce nanoparticle clusters. ACS Sustainable Chem. Eng. 11, 2574-2585.

[89]

Li, B., Li, Y., Dou, Y., et al., 2021. SiC/Mn co-doped CaO pellets with enhanced optical and thermal properties for calcium looping thermochemical heat storage. Chem. Eng. J. 423, 130305.

[90]

Li, B.Y., Li, Y.J., Sun, H., et al., 2020. Thermochemical heat storage performance of CaO pellets fabricated by extrusion-spheronization under harsh calcination conditions. Energy Fuel. 34, 6462-6473.

[91]

Li, C.L., Li, Y.J., Zhang, C.X., et al., 2023. Ca3B2O6-modified papermaking white mud for CaCO3/CaO thermochemical energy storage. Chem. Eng. J. 461, 142096.

[92]

Li, C.L., Li, Y.J., Zhang, C.X., et al., 2022a. CaO/CaCO3 thermochemical energy storage performance of high-alumina granule stabilized papermaking soda residue. Fuel Process. Technol. 237, 107444.

[93]

Li, C.L., Li, Y.J., Zhang, C.X., et al., 2022b. Thermochemical energy storage performance of papermaking soda residue during CaO-CaCO3 cycles. J. CO 2 Util. 62, 102072.

[94]

Li, C.L., Li, Y.J., Fang, Y., et al., 2024b. TiO2/MnFe2O4 co-modified alkaline papermaking waste for CaO-CaCO3 thermochemical energy storage. Appl. Energy 362, 123052.

[95]

Li, J., Ma, X.T., Huang, X.K., et al., 2024a. Improved properties of the Co/Al-doped carbide slag pellet as a potential high-temperature thermal battery by tunable coating strategy. J. Environ. Chem. Eng. 12 (2), 112108.

[96]

Li, H.L., Qu, M.Y., Yang, Y.D., et al., 2019. One-step synthesis of spherical CaO pellets via novel graphite-casting method for cyclic CO2 capture. Chem. Eng. J. 374, 619-625.

[97]

Li, Y.J., Zhao, C.S., Ren, Q.Q., 2011. Thermodynamic simulation of CO2 capture for an IGCC power plant using the calcium looping cycle. Chem. Eng. Technol. 34, 946-954.

[98]

Li, Y.J., Shi, L., Liu, C.T., et al., 2015. Studies on CO2 uptake by CaO/Ca3Al2O6 sorbent in calcium looping cycles. J. Therm. Anal. Calorim. 120, 1519-1528.

[99]

Li, Z.S., 2020. General rate equation theory for gas-solid reaction kinetics and its application to CaO carbonation. Chem. Eng. Sci. 227, 115902.

[100]

Lisbona, P., Bailera, M., Hills, T., et al., 2020. Energy consumption minimization for a solar lime calciner operating in a concentrated solar power plant for thermal energy storage. Renew. Energy 156, 1019-1027.

[101]

Liu, H., Wu, S., 2019. Preparation of high sorption durability nano-CaO-ZnO CO2 adsorbent. Energy Fuel. 33, 7626-7633.

[102]

Liu, J.Y., Yan, Q.Q., Zhang, M.H., 2023a. Ecosystem carbon storage considering combined environmental and land-use changes in the future and pathways to carbon neutrality in developed regions. Sci. Total Environ. 903, 166204.

[103]

Liu, X.L., Yuan, C.J., Zheng, H.B., et al., 2022. Synergy of Li2CO3 promoters and Al-Mn-Fe stabilizers in CaCO3 pellets enables efficient direct solar-driven thermochemical energy storage. Mater. Today Energy 30, 101174.

[104]

Liu, Z.Y., Lam, J.F.I., Chen, H.X., et al., 2023b. Can green investment improve China's regional energy consumption structure? novel findings and implications from sustainable energy systems perspective. Front. Energy Res. 11, 1273347.

[105]

Liu, H., Zhang, J.S., Wei, J.J., et al., 2023. Mn and Mg synergistically stabilized CaO as an effective thermochemical material for solar energy storage. Sol. Energ. Mat. Sol. C. 252, 112202.

[106]

Lu, D.Y., Hughes, R.W., Anthony, E.J., 2008. Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds. Fuel Process. Technol. 89, 1386-1395.

[107]

Luo, T., Luo, C., Shi, Z.W., et al., 2022. Optimization of sol-gel combustion synthesis for calcium looping CO2 sorbents, part I: effects of sol-gel preparation and combustion conditions. Sep. Purif. Technol. 292, 121081.

[108]

Ma, L., Qin, C., Pi, S., et al., 2020. Fabrication of efficient and stable Li4SiO4-based sorbent pellets via extrusion-spheronization for cyclic CO2 capture. Chem. Eng. J. 379, 122385.

[109]

Ma, X., Li, Y., Duan, L., et al., 2018. CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions. Appl. Energy 225, 402-412.

[110]

Ma, X., Li, Y., Qian, Y., et al., 2019. A carbide slag-based, Ca12Al14O33-stabilized sorbent prepared by the hydrothermal template method enabling efficient CO2 capture. Energies 12, 2617-2633.

[111]

Ma, X., Li, Y., Shi, L., et al., 2016. Fabrication and CO2 capture performance of magnesiastabilized carbide slag by by-product of biodiesel during calcium looping process. Appl. Energy 168, 85-95.

[112]

Ma, X.T., Huang, X.K., Zhang, H.R., et al., 2023. Effect of calcium aluminates on the structure evolution of CaO during the calcium looping process: a DFT study. Chem. Eng. J. 452, 139552.

[113]

Manovic, V., Anthony, E.J., 2009. CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture. Environ. Sci. Technol. 43, 7117-7122.

[114]

Manovic, V., Anthony, E.J., 2010. CO2 carrying behavior of calcium aluminate pellets under high-temperature/high-CO2 concentration calcination conditions. Ind. Eng. Chem. Res. 49, 6916-6922.

[115]

Meier, A., Bonaldi, E., Cella, G.M., et al., 2004. Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime. Energy 29, 811-821.

[116]

Mondal, M.K., Balsora, H.K., Varshney, P., 2012. Progress and trends in CO2 capture/ separation technologies: a review. Energy 46, 431-441.

[117]

Moreno, V., Arcenegui-Troya, J., Sánchez-Jiménez, P., et al., 2022. Albero: an alternative natural material for solar energy storage by the calcium-looping process. Chem. Eng. J. 440, 135707.

[118]

Mukhtar, A., Ullah, S., Inayat, A., et al., 2021. Synthesis-structure-property relationship of nitrogen-doped porous covalent triazine frameworks for pre-combustion CO 2 capture. Energy 216, 119230.

[119]

Narayanan, T.M., Zhu, Y.G., Gençer, E., et al., 2021. Low-cost manganese dioxide semisolid electrode for flow batteries. Joule 5 (11), 2934-2954.

[120]

Nikolopoulos, A., Nikolopoulos, N., Charitos, A., et al., 2013. High-resolution 3-D fullloop simulation of a CFB carbonator cold model. Chem. Eng. Sci. 90, 137-150.

[121]

Ortiz, C., Binotti, M., Romano, M.C., et al., 2019. Off-design model of concentrating solar power plant with thermochemical energy storage based on calcium-looping. AIP Conf. Proc. 2126, 210006.

[122]

Ortiz, C., Carro, A., Chacartegui, R., et al., 2022. Low-pressure calcination to enhance the calcium looping process for thermochemical energy storage. J. Clean. Prod. 363, 132295.

[123]

Ortiz, C., Chacartegui, R., Valverde, J.M., et al., 2017. Power cycles integration in concentrated solar power plants with energy storage based on calcium looping. Energy Convers. Manag. 149, 815-829.

[124]

Ortiz, C., Chacartegui, R., Valverde, J.M., et al., 2016. A new integration model of the calcium looping technology into coal fired power plants for CO2 capture. Appl. Energy 169, 408-420.

[125]

Ortiz, C., Chacartegui, R., Valverde, J.M., et al., 2021a. Increasing the solar share in combined cycles through thermochemical energy storage. Energy Convers. Manag. 229, 113730.

[126]

Ortiz, C., Tejada, C., Chacartegui, R., et al., 2021b. Solar combined cycle with hightemperature thermochemical energy storage. Energy Convers. Manag. 241, 114274.

[127]

Pandey, A., Bhaduri, G.A., 2023. Intensification of aqueous mineralisation of CO2 with CaO containing industrial wastes in a modified airlift reactor. Chem. Eng. Res. Des. 200, 303-311.

[128]

Pelay, U., Lu, L.A., Fan, Y.L., et al., 2017. Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 79, 82-100.

[129]

Peng, X.Y., Yao, M., Root, T.W., et al., 2020. Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage. Appl. Energy 262, 114543.

[130]

Prieto, C., Cooper, P., Fernández, A.I., et al., 2016. Review of technology: thermochemical energy storage for concentrated solar power plants. Renew. Sustain. Energy Rev. 60, 909-929.

[131]

Qin, C., Yin, J., An, H., Liu, W., et al., 2012. Performance of extruded particles from calcium hydroxide and cement for CO2 capture. Energy Fuels 26, 154-161.

[132]

Radfarnia, H.R., Sayari, A., 2015. A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol-gel technique. Chem. Eng. J. 262, 913-920.

[133]

Raganati, F., Ammendola, P., 2023. Review of carbonate-based systems for thermochemical energy storage for concentrating solar power applications: state-ofthe- art and outlook. Energy Fuels 37, 1777-1808.

[134]

Regin, A.F., Solanki, S.C., Saini, J.S., 2008. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew. Sustain. Energy Rev. 12, 2438-2458.

[135]

Rodríguez, N., Alonso, M., Abanades, J.C., 2011a. Experimental investigation of a circulating fluidized-bed reactor to capture CO2 with CaO. AlChE J 57, 1356-1366.

[136]

Rodríguez, N., Alonso, M., Abanades, J.C., et al., 2011b. Comparison of experimental results from three dual fluidized bed test facilities capturing CO 2 with CaO. Energy Proc. 4, 393-401.

[137]

Rubin, E.S., Mantripragada, H., Marks, A., et al., 2012. The outlook for improved carbon capture technology. Prog. Energy Combust. Sci. 38, 630-671.

[138]

Sao, A., Gaikwad, M.S., 2024. Recent progress and future outlook on hybrid aerogel materials for sustainable CO2 capture: a mini review. Mater. Lett. 355, 135423.

[139]

Shaikh, A.R., Wang, Q.H., Feng, Y., et al., 2021. Thermodynamic analysis of 350 MWe coal power plant based on calcium looping gasification with combined cycle. Int. J. Greenh. Gas Control 110, 103439.

[140]

Shao, B., Wang, Z.Q., Gong, X.Q., et al., 2023. Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst. Nat. Commun. 14, 996.

[141]

Shimizu, T., Hirama, T., Hosoda, H., et al., 1999. A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem. Eng. Res. Des. 77, 62-68.

[142]

Silaban, A., Harrison, D.P., 1995. High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO(s) and CO2(g). Chem. Eng. Commun. 137, 177-190.

[143]

Singh, G., 2021. A review on different high velocity oxyfuel coated matrix materials. Mater. Today Proc. 37, 2294-2297.

[144]

Strelow, M., Schlitzberger, C., Röder, F., et al., 2012. CO2 separation by carbonate looping including additional power generation with a CO2-H2O steam turbine. Chem. Eng. Technol. 35, 431-439.

[145]

Ströhle, J., Junk, M., Kremer, J., et al., 2014. Carbonate looping experiments in a 1 MWth pilot plant and model validation. Fuel 127, 13-22.

[146]

Ströhle, J., Lasheras, A., Galloy, A., et al., 2009. Simulation of the carbonate looping process for post-combustion CO2 capture from a coal-fired power plant. Chem. Eng. Technol. 32, 435-442.

[147]

Sun, H., Li, Y., Bian, Z., et al., 2019. Thermochemical energy storage performances of Cabased natural and waste materials under high pressure during CaO/CaCO3 cycles. Energy Convers. Manag. 197, 111885.

[148]

Sun, H., Li, Y., Yan, X., et al., 2020a. Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure. Appl. Energy 263, 114650.

[149]

Sun, H., Li, Y.J., Yan, X.Y., et al., 2020b. CaO/CaCO3 thermochemical heat storage performance of CaO-based micrometre-sized tubular composite. Energy Convers. Manag. 222, 113222.

[150]

Sun, J., Liu, W., Hu, Y., et al., 2015. Structurally improved, core-in-shell, CaO-based sorbent pellets for CO2 capture. Energy Fuel. 29, 6636-6644.

[151]

Sun, J., Sun, Y., Yang, Y.D., et al., 2019b. Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature. Appl. Energy 242, 919-930.

[152]

Sun, R.Y., Peng, C., Chem, Y.H., et al., 2021. CO2 capture capacity and anti-sintering mechanism of MgO supported CaO based sorbent. Chem. Ind. Eng. Prog. 40, 6385-6392.

[153]

Sun, R.Y., Shen, H., Lv, X., et al., 2024. Solution combustion synthesis of MgO-stabilized CaO sorbents using polyethylene glycol as fuel and dispersant. RSC Adv. 14 (3), 1741-1749.

[154]

Symonds, R.T., Lu, D.Y., Hughes, R.W., et al., 2009a. CO2 capture from simulated syngas via cyclic carbonation/calcination for a naturally occurring limestone: pilot-plant testing. Ind. Eng. Chem. Res. 48, 8431-8440.

[155]

Symonds, R.T., Lu, D.Y., Macchi, A., et al., 2009b. CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: modelling and benchscale testing. Chem. Eng. Sci. 64, 3536-3543.

[156]

Tan, Y.Y., Liu, W.Q., Zhang, X.Y., et al., 2024. Conventional and optimized testing facilities of calcium looping process for CO 2 capture: a systematic review. Fuel 358, 130337.

[157]

Teixeira, P., Mohamed, I., Fernandes, A., et al., 2020. Enhancement of sintering resistance of CaO-based sorbents using industrial waste resources for Ca-looping in the cement industry. Sep. Purif. Technol. 235, 116190.

[158]

Teng, L., Xuan, Y.M., Da, Y., et al., 2020. Modified Ca-Looping materials for directly capturing solar energy and high-temperature storage. Energy Storage Mater. 25, 836-845.

[159]

Tesio, U., Guelpa, E., Verda, V., 2020. Integration of thermochemical energy storage in concentrated solar power. Part 1: energy and economic analysis/optimization. Energ Convers Man-X 6, 100039.

[160]

Tian, S.C., Yan, F., Zhang, Z.T., et al., 2019. Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency. Sci. Adv. 5, eaav5077.

[161]

Tian, X.K., Lin, S.C., Yan, J., et al., 2022. Sintering mechanism of calcium oxide/calcium carbonate during thermochemical heat storage process. Chem. Eng. J. 428, 131229.

[162]

Tiwary, S., Bhaumik, S.K., 2022. Theoretical approaches in hot CO2 capture using modified CaO-based sorbents: review. J. CO2 Util. 57, 101875.

[163]

Wang, C.Q., Liu, L., Long, Y., et al., 2024. Comparative investigation on CO2 uptake performance of limestone-derived sorbents with different supports synthesized by impregnated layer solution combustion method. Sep. Purif. Technol. 332, 125737.

[164]

Wang, F.F., Li, Y.J., Wang, Y.Z., et al., 2022a. Mechanism insights into sorption enhanced methane steam reforming using Ni-doped CaO for H2 production by DFT study. Fuel 319, 123849.

[165]

Wang, I.W., Huang, S.Y., Wang, S.H., et al., 2024. Mechanistic study of integrated CO2 capture and utilization over Cu and Al-modified calcined limestone with high stability using MFB-TGA-MS. Sep. Purif. Technol. 333, 125975.

[166]

Wang, K., Gu, F., Clough, P.T., et al., 2020. Porous MgO-stabilized CaO-based powders/ pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants. Chem. Eng. J. 390, 124163.

[167]

Wang, Q., Yao, Y., Shen, Z., et al., 2023. Concentrated solar power tower systems coupled locally with spectrally selective coatings for enhancement of solar-thermal conversion and economic performance. Green Energy Resour 1, 100001.

[168]

Wang, Y., Zhu, Y., Liu, W., et al., 2022b. Design of solar-coal complementary power generation system based on magnesium-based flue gas carbon capture. Clean Coal Technol 28, 57-63.

[169]

Wang, Y.Z., Li, Y.J., 2023. Sorption-enhanced steam gasification of biomass for H2-rich gas production and in-situ CO2 capture by CaO-based sorbents: a critical review. Appl. Energy Combust. Sci. 14, 100124.

[170]

Wu, X., Dong, Y.C., Ma, J.C., et al., 2023. Industrial-scaled Cu-Fe composite oxygen carrier for chemical looping combustion through extrusion-spheronization. Chem. Eng. J. 477, 146620.

[171]

Wang, D., Littlewood, P., Marks, T.J., et al., 2022c. Coking can enhance product yields in the dry reforming of methane. ACS Catal. 12, 8352-8362.

[172]

Xu, G.Y., Zang, L.M., Schwarz, P., et al., 2023a. Achieving China's carbon neutrality goal by economic growth rate adjustment and low-carbon energy structure. Energy Pol. 183, 113817.

[173]

Xu, R.C., Sun, J., Zhang, X.Y., et al., 2023b. Strengthening performance of Al-stabilized, CaO-based CO2 sorbent pellets by the combination of impregnated layer solution combustion and graphite-moulding. Sep. Purif. Technol. 315, 123757.

[174]

Xu, Y., Li, Y., Zhang, C., et al., 2021. High-temperature thermochemical heat storage performance of CaO honeycombs during CaO/CaCO3 cycles. Energy Fuels 35, 16882-16893.

[175]

Xu, Y.Q., Lu, C.A., Luo, C., et al., 2023c. Thermochemical energy storage by calcium looping process that integrates CO2 power cycle and steam power cycle. Fuel Process. Technol. 242, 107656.

[176]

Xu, Y.Q., Wu, M.N., Yang, X.X., et al., 2023d. Recent advances and prospects in high purity H2 production from sorption enhanced reforming of bio-ethanol and bioglycerol as carbon negative processes: a review. Carbon Capture Sci T 8, 100129.

[177]

Yan, X., Li, Y., Ma, X., et al., 2020. CeO2-modified CaO/Ca12Al14O33 bi-functional material for CO2 capture and H2 production in sorption-enhanced steam gasification of biomass. Energy 192, 116664.

[178]

Yan, X., Li, Y., Ma, X., et al., 2019. CO2 capture by a novel CaO/MgO sorbent fabricated from industrial waste and dolomite under calcium looping conditions. New J. Chem. 43, 5116-5125.

[179]

Yang, L.L., Huang, Z.Q., Huang, G., 2020. Fe- and Mn-doped Ca-based materials for thermochemical energy storage systems. Energy Fuel. 34, 11479-11488.

[180]

Yang, T., Wang, R., Chapman, A.J., 2023a. Research on the impact of green finance and the digital economy on the energy consumption structure in the context of carbon neutrality. Sustainability-Basel 15, 15874.

[181]

Yang, Y., Javanroodi, K., Nik, V.M., 2022a. Climate change and renewable energy generation in europe—long-term impact assessment on solar and wind energy using high-resolution future climate Data and considering climate uncertainties. Energies 15, 302-321.

[182]

Yang, Y., Li, Y., Zhang, C., et al., 2022b. Thermochemical heat storage and optical properties of red mud/Mn co-doped high alumina cement-stabilized carbide slag in CaO/CaCO3 cycles. Fuel Process. Technol. 236, 107419.

[183]

Yang, Y., Li, Y.J., Yan, X.Y., et al., 2021. Development of thermochemical heat storage based on CaO/CaCO3 cycles: a review. Energies 14, 6847.

[184]

Yang, Y.D., Zhang, Z.Z., Chen, Z.Q., et al., 2023b. One-step fabrication of sizecontrollable, biowaste-templated Li4SiO4 spherical pellets via freeze-drying method for cyclic CO2 capture. Chem. Eng. J. 462, 142297.

[185]

Yu, D.X., Yu, X., Wu, J.Q., et al., 2021. A comprehensive review of ash issues in oxyfuel combustion of coal and biomass: mineral matter transformation, ash formation, and deposition. Energy Fuels 35, 17241-17260.

[186]

Yun, D., Chae, H., Kim, H., et al., 2020. Integrity assessment of obsolete thermal storage tank in district heating system. Korean J Met Mater 58, 693-702.

[187]

Zang, P.C., Tang, J.Y., Zhang, X.Y., et al., 2023. Strategies to improve CaO absorption cycle stability and progress of catalysts in Ca-based DFMs for integrated CO2 captureconversion: a critical review. J. Environ. Chem. Eng. 11, 111047.

[188]

Zhai, R., Li, C., Qi, J., et al., 2016. Thermodynamic analysis of CO2 capture by calcium looping process driven by coal and concentrated solar power. Energy Convers. Manag. 117, 251-263.

[189]

Zhang, C., Li, Y., He, Z., et al., 2022a. Microtubular Fe/Mn-promoted CaO-Ca12Al14O33 bifunctional material for H2 production from sorption enhanced water gas shift. Appl. Catal., B 314, 121474.

[190]

Zhang, C.X., Li, Y.J., Yang, L.G., et al., 2022b. Analysis on H2 production process integrated CaO/Ca(OH) 2 heat storage and sorption enhanced staged gasification using calcium looping. Energy Convers. Manag. 253, 115169.

[191]

Zhang, X.Y., Liu, W.Q., Peng, P., et al., 2023a. A dual functional sorbent/catalyst material for in-situ CO2 capture and conversion to ethylene production. Fuel 351, 128701.

[192]

Zhang, X.Y., Liu, W.Q., Zhou, S.M., et al., 2022c. A review on granulation of CaO-based sorbent for carbon dioxide capture. Chem. Eng. J. 446, 136880.

[193]

Zhang, Y., Li, Y., Xu, Y., et al., 2023b. CaO/CaCO3 thermochemical energy storage performance of MgO/ZnO co-doped CaO honeycomb in cycles. J. Energy Storage 66, 107447.

[194]

Zhang, Y.H., Li, Y.J., Fang, Y., et al., 2023c. DFT study of the cooperative promotion of MgO and ZnO on CaCO3/CaO thermochemical heat storage performance of CaO. Energy Fuels 37, 16119-16130.

[195]

Zhang, Y.H., Xu, Y.F., Wang, F.F., et al., 2022d. DFT study on effect of ZnO on CO2 adsorption performance of CaO adsorbents. J..Cent.. South Univ. 53, 4657-4665.

[196]

Zhao, M., Minett, A.I., Harris, A.T., 2013. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy Environ. Sci. 6, 25-40.

[197]

Zhao, P.P., Ma, B., Tian, J.Q., et al., 2024. Highly stable FeNiMnCaO catalyst for integrated CO 2 capture and hydrogenation to CO. Chem. Eng. J. 482, 148948.

[198]

Zheng, H.B., Liu, X.L., Xuan, Y.M., et al., 2023. Efficient direct solar-driven thermochemical energy storage of (AlMgFeMn) OxCaCO3 pellets in a fluidized bed reactor. Energy Convers. Manag. 285, 116990.

[199]

Zheng, H.B., Song, C., Bao, C., et al., 2020. Dark calcium carbonate particles for simultaneous full-spectrum solar thermal conversion and large-capacity thermochemical energy storage. Sol. Energy Mater. Sol. Cells 207, 110364.

[200]

Zhou, K., Li, Y., Li, M., 2022. Research progress on the coupling technology of coal-fired power generation-physical thermal storage and analysis for the system peaking capacity. Clean Coal Technol. 28, 159-173.

[201]

Zhou, L.F., Duan, L., Anthony, E.J., 2019. A calcium looping process for simultaneous CO2 capture and peak shaving in a coal-fired power plant. Appl. Energy 235, 480-486.

[202]

Zhou, Y., Zhou, Z.J., Liu, L., et al., 2021. Enhanced thermochemical energy storage stability of CaO-based composite pellets incorporated with a Zr-based stabilizer. Energy Fuels 35, 18778-18788.

[203]

Zhou, Y.Q., Ma, X.L., Yusanjan, Q., et al., 2024. Active metal-free CaO-based dualfunction materials for integrated CO 2 capture and reverse water-gas shift. Chem. Eng. J. 485, 149937.

AI Summary AI Mindmap
PDF (6200KB)

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/