A review on fly ash high-value synthesis utilization and its prospect

Min Wang , Dong Chen , Hui Wang , Wei Gao

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100062

PDF (6039KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100062 DOI: 10.1016/j.gerr.2024.100062
Reviews
research-article

A review on fly ash high-value synthesis utilization and its prospect

Author information +
History +
PDF (6039KB)

Abstract

As a common industrial solid waste, fly ash requires proper processing and utilization to alleviate environmental pressure. In contrast to earlier low-value treatment methods for fly ash, such as its use in construction materials, it is more practical to explore the high-value utilization of fly ash, considering its elemental ingredient and morphological characteristics. Herein, this work comprehensively reviews the methods and research progress of extracting and preparing silica, alumina, and zeolite respectively derived from silicon and aluminum elements in fly ash. Specifically, the mechanisms and processes of various methods are elucidated in detail, and the virtues and drawbacks of the production technologies are compared to identify a more economical and environmentally friendly method. Importantly, this work first reviews the utilization of fly ash in energy storage electrode materials. Different synthesis and treatment strategies are thoroughly examined, especially in fully utilizing fly ash as a primary resource, converting it into energy storage materials. Finally, this paper summarizes the opportunities and challenges associated with the high-value utilization of fly ash.

Keywords

Fly ash / High-value utilization / Silica nanoparticles / Alumina / Zeolite / Electrochemical energy storage materials

Cite this article

Download citation ▾
Min Wang, Dong Chen, Hui Wang, Wei Gao. A review on fly ash high-value synthesis utilization and its prospect. Green Energy and Resources, 2024, 2(1): 100062 DOI:10.1016/j.gerr.2024.100062

登录浏览全文

4963

注册一个新账户 忘记密码

Author contributions

Min Wang: Investigation, Validation, Methodology, Data curation, Writing-original draft.

Dong Chen: Investigation, Validation, Data curation, Writing-original draft.

Hui Wang: Resources, Data curation, Supervision, Writing-review&editing, Project administration, Funding acquisition.

Wei Gao: Review manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors gratefully acknowledge the funding from “the General Programs of the National Natural Science Foundation of China” (Grant No. 51676058).

References

[1]

Abioye, A.M., Ani, F.N., 2015. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renewable Sustainable Energy Rev. 52, 1282-1293.

[2]

Ahmaruzzaman, M., 2010. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 36 (3), 327-363.

[3]

Ahmed, H.U., Mohammed, A.S., Faraj, R.H., Qaidi, S.M.A., Mohammed, A.A., 2022. Compressive strength of geopolymer concrete modified with nano-silica: experimental and modeling investigations. Case Stud. Constr. Mater. 16, e01036.

[4]

Al-Shmaisani, S., Kalina, R.D., Douglas Ferron, R., Juenger, M.C.G., 2022. Assessment of blended coal source fly ashes and blended fly ashes. Chem. Eng. Trans. 342, 127918.

[5]

Alterary, S.S., Marei, N.H., 2021. Fly ash properties, characterization, and applications: a review. J. King Saud Univ. Sci. 33 (6), 101536.

[6]

Anuwattana, R., Balkus, K.J., Asavapisit, S., Khummongkol, P., 2008. Conventional and microwave hydrothermal synthesis of zeolite ZSM-5 from the cupola slag. Microporous Mesoporous Mater. 111 (1-3), 260-266.

[7]

Aphane, M.E., Doucet, F.J., Kruger, R.A., Petrik, L., van der Merwe, E.M., 2020. Preparation of sodium silicate solutions and silica nanoparticles from south african coal fly ash. Waste Biomass Valorization 11, 4403-4417.

[8]

Bai, G., Teng, W., Wang, X., Zhang, H., Xu, P., 2010a. Processing and kinetics studies on the alumina enrichment of coal fly ash by fractionating silicon dioxide as nano particles. Fuel Process. Technol. 91 (2), 175-184.

[9]

Bai, G., Wei, T., Wang, X., Qin, J., Xu, P., Li, P., 2010b. Alkali desilicated coal fly ash as substitute of bauxite in lime-soda sintering process for aluminum production. Trans. Nonferrous Metals Soc. China 20, 169-175.

[10]

Balasubramaniam, T., Sharan Karthik, P.M., Sureshkumar, S., Bharath, M., Arun, M., 2021. Effectiveness of industrial waste materials used as ingredients in fly ash brick manufacturing. Mater. Today: Proc. 45, 7850-7858.

[11]

Belviso, C., 2018. State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 65, 109-135.

[12]

Bharti, C., Nagaich, U., Pal, A.K., Gulati, N., 2015. Mesoporous silica nanoparticles in target drug delivery system: a review. Int. J. Pharm. Investig. 5 (3), 124-133.

[13]

Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M., Techapaphawit, S., 2019. Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud. Constr. Mater. 11, e00263.

[14]

Bocullo, V., Vitola, L., Vaiciukyniene, D., Kantautas, A., Bajare, D., 2021. The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash. Mater. Chem. Phys. 258, 123846.

[15]

Boonmee, A., Jarukumjorn, K., 2019. Preparation and characterization of silica nanoparticles from sugarcane bagasse ash for using as a filler in natural rubber composites. Polym. Bull. 77 (7), 3457-3472.

[16]

Borowski, G., Ozga, M., 2020. Comparison of the processing conditions and the properties of granules made from fly ash of lignite and coal. Waste Manag. 104, 192-197.

[17]

Boycheva, S., Marinov, I., Miteva, S., Zgureva, D., 2020. Conversion of coal fly ash into nanozeolite Na-X by applying ultrasound assisted hydrothermal and fusionhydrothermal alkaline activation. Sustainable Chem. Pharm. 15, 100217.

[18]

Bukhari, S.S., Rohani, S., Kazemian, H., 2016. Effect of ultrasound energy on the zeolitization of chemical extracts from fused coal fly ash. Ultrason. Sonochem. 28, 47-53.

[19]

Cavusoglu, I., Yilmaz, E., Yilmaz, A.O., 2021. Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures. Construct. Build. Mater. 267, 121021.

[20]

Chen, B., Yang, X., Zeng, X., Yang, M., Xiao, J., Fan, L., Huang, Z., Zhao, F., Zhan, G., 2020a. Rational design of integrated nanocatalysts with hollow mesoporous transition metal silicates for chemoselective hydrogenation of cinnamaldehyde. Mol. Catal. 493, 111069.

[21]

Chen, J., Liu, J., Yao, Y., Chen, S., 2020b. Effect of microstructural damage on the mechanical properties of silica nanoparticle-reinforced silicone rubber composites. Eng. Fract. Mech. 235, 107195.

[22]

Chen, W., Glackin, C.A., Horwitz, M.A., Zink, J.I., 2019. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc. Chem. Res. 52 (6), 1531-1542.

[23]

Chen, W., Song, G., Lin, Y., Qiao, J., Wu, T., Yi, X., Kawi, S., 2022. Synthesis and catalytic performance of Linde-type A zeolite (LTA) from coal fly ash utilizing microwave and ultrasound collaborative activation method. Catal. Today 397-399, 407-418.

[24]

Chen, X., Bleken, F.L., Løvvik, O.M., Vullum-Bruer, F., 2016. Comparing electrochemical performance of transition metal silicate cathodes and chevrel phase Mo6S8 in the analogous rechargeable Mg-ion battery system. J. Power Sources 321, 76-86.

[25]

Chen, X., Zhang, Y., Wang, C., Dong, X., Meng, C., 2021. The synthesis and electrochemical properties of low-crystallinity iron silicate derived from reed leaves as a supercapacitor electrode material. Dalton Trans. 50 (25), 8917-8926.

[26]

Chen, Z., Song, G., Li, C., Chen, W., Li, Z., Kawi, S., 2023. Coal fly ash to Y zeolite of great purity and crystallinity: a new and green activation method of combined in situ microwave and ultrasound. Solid State Sci. 136, 107102.

[27]

Christopher, I.F.F., Karuppiah, A., Thanapalan, V.G., Selestin, A.V., Suyambu, T., 2023a. Preparation of SiO2 nano matrix engendered from coal fly ash encrusted with NiFe2O4 nanocomposites for high electrochemical performance. Silicon 1-20.

[28]

Christopher, I.F.F., Karuppiah, A., Thanapalan, V.G., Selestin, A.V., Suyambu, T., 2023b. SiO2 nanomatrix engendered from coal fly ash encrusted with NiFe2O4 nanocomposites for high-performance supercapacitor. Braz. J. Phys. 53 (6), 149.

[29]

Delitsyn, L., Kulumbegov, R., Popel, O., Sulman, M.G., Kosivtsov, Y., 2022. Ash from coalfired power plants as a raw material for the production of alumina. Chem. Eng. Trans. 94, 655-660.

[30]

Ding, J., Ma, S., Shen, S., Xie, Z., Zheng, S., Zhang, Y., 2017. Research and industrialization progress of recovering alumina from fly ash: a concise review. Waste Manag. 60, 375-387.

[31]

Ding, J., Ma, S., Xie, Z., Wang, X., Zheng, S., Zhang, Y., 2019. Formation mechanism of an undesirable by-product in the mild hydro-chemical process for the extraction of alumina from fly ash and its mitigation. Hydrometallurgy 186, 292-300.

[32]

Ding, J., Ma, S., Zheng, S., Zhang, Y., Xie, Z., Shen, S., Liu, Z., 2016. Study of extracting alumina from high-alumina PC fly ash by a hydro-chemical process. Hydrometallurgy 161, 58-64.

[33]

Ding, Y., Qiao, Z.A., 2022. Carbon surface chemistry: new insight into the old story. Adv. Mater. 34 (42), e2206025.

[34]

Durand, V., Drobek, M., Hertz, A., Ruiz, J.-C., Sarrade, S., Guizard, C., Julbe, A., 2013. Evaluation of a new on-stream supercritical fluid deposition process for sol-gel preparation of silica-based membranes on tubular supports. J. Supercrit. Fluids 77, 17-24.

[35]

El-Mahdy, A.F.M., Yu, T.C., Kuo, S.-W., 2021. Synthesis of multiple heteroatom-doped mesoporous carbon/silica composites for supercapacitors. Chem. Eng. J. 414, 128796.

[36]

El Bojaddayni, I., Emin Küçük, M., El Ouardi, Y., Jilal, I., El Barkany, S., Moradi, K., Repo, E., Laatikainen, K., Ouammou, A., 2023. A review on synthesis of zeolites from natural clay resources and waste ash: recent approaches and progress. Miner. Eng. 198, 108086.

[37]

Erol, M., Küçükbayrak, S., Ersoy-Meriçboyu, A., 2008. Characterization of sintered coal fly ashes. Fuel 87 (7), 1334-1340.

[38]

Fan, X.L., Xia, J.L., Zhang, D.R., Nie, Z.Y., Liu, Y.P., Zhang, L.J., Zhang, D.Y., 2022. Highlyefficient and sequential recovery of rare earth elements, alumina and silica from coal fly ash via a novel recyclable ZnO sinter method. J. Hazard Mater. 437, 129308.

[39]

Fang, C., Zhang, D., 2021. Portland cement electrolyte for structural supercapacitor in building application. Construct. Build. Mater. 285, 122897.

[40]

Farjadian, F., Roointan, A., Mohammadi-Samani, S., Hosseini, M., 2019. Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem. Eng. J. 359, 684-705.

[41]

Feng, H., Zheng, M., Dong, H., Xiao, Y., Hu, H., Sun, Z., Long, C., Cai, Y., Zhao, X., Zhang, H., Lei, B., Liu, Y., 2015. Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ashcontent sewage sludge. J. Mater. Chem. A 3 (29), 15225-15234.

[42]

Feng, W., Hu, G., May, E.F., Li, G.K., 2022. Synthesis of zeolites from circulated fluidized bed coal fly ash. Inorg. Chem. Front. 9 (8), 1681-1691.

[43]

Fu, B., Liu, G., Mian, M.M., Sun, M., Wu, D., 2019. Characteristics and speciation of heavy metals in fly ash and FGD gypsum from Chinese coal-fired power plants. Fuel 251, 593-602.

[44]

Fukui, K., Kanayama, K., Yamamoto, T., Yoshida, H., 2007. Effects of microwave irradiation on the crystalline phase of zeolite synthesized from fly ash by hydrothermal treatment. Adv. Powder Technol. 18, 381-393.

[45]

Gao, M., Ma, Q., Lin, Q., Chang, J., Ma, H., 2017. A novel approach to extract SiO2 from fly ash and its considerable adsorption properties. Mater. Des. 116, 666-675.

[46]

Ge, J., Yoon, S., Choi, N., 2018. Application of fly ash as an adsorbent for removal of air and water pollutants. Appl. Sci. 8 (7), 1116.

[47]

Ghazali, N., Muthusamy, K., Ahmad, S.W., 2019. Utilization of fly ash in construction. IOP Conf. Ser. Mater. Sci. Eng. 601, 12023.

[48]

Gollakota, A.R.K., Volli, V., Shu, C.M., 2019. Progressive utilisation prospects of coal fly ash: a review. Sci. Total Environ. 672, 951-989.

[49]

Gong, Y., Chen, M., Sun, J., Zhang, T., 2023. A high-efficiency alkali circulation process for alumina extraction from high alumina fly ash via improved hydro-chemical method. Jom 75 (4), 1148-1157.

[50]

Gong, Y., Sun, J., Zhang, Y., Zhang, Y., Zhang, T.-a., 2021. Dependence on the distribution of valuable elements and chemical characterizations based on different particle sizes of high alumina fly ash. Fuel 291, 120225.

[51]

Grabias-Blicharz, E., Franus, W., 2023. A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Sci. Total Environ. 860, 160529.

[52]

Guo, C., Zhao, L., Yang, J., Wang, K., Zou, J., 2020. A novel perspective process for alumina extraction from coal fly ash via potassium pyrosulfate calcination activation method. J. Clean. Prod. 271, 122703.

[53]

Guo, C., Zou, J., Ma, S., Yang, J., Wang, K., 2019. Alumina extraction from coal fly ash via low-temperature potassium bisulfate calcination. Minerals 9 (10), 585.

[54]

Guo, J., Dong, D., Wang, J., Liu, D., Yu, X., Zheng, Y., Wen, Z., Lei, W., Deng, Y., Wang, J., Hong, G., Shao, H., 2021. Silicon-based lithium ion battery systems: state-of-the-art from half and full cell viewpoint. Adv. Funct. Mater. 31 (34), 2102546.

[55]

Guo, Y., Zhao, Z., Zhao, Q., Cheng, F., 2017. Novel process of alumina extraction from coal fly ash by pre-desilicating-Na2CO3 activation-acid leaching technique. Hydrometallurgy 169, 418-425.

[56]

Han, C., Hu, Y., Wang, K., Luo, G., 2020. Synthesis of mesoporous silica microspheres by a spray-assisted carbonation microreaction method. Particuology 50, 173-180.

[57]

He, L., Shi, L., Huang, Q., Hayat, W., Shang, Z., Ma, T., Wang, M., Yao, W., Huang, H., Chen, R., 2021a. Extraction of alumina from aluminum dross by a non-hazardous alkaline sintering process: dissolution kinetics of alumina and silica from calcined materials. Sci. Total Environ. 777, 146123.

[58]

He, P., Zhang, X., Chen, H., Zhang, Y., 2021b. Waste-to-resource strategies for the use of circulating fluidized bed fly ash in construction materials: a mini review. Powder Technol. 393, 773-785.

[59]

Hollman, G.G., Steenbruggen, G., Janssen-Jurkovićová M., 1999. A two-step process for the synthesis of zeolites from coal fly ash. Fuel 78, 1225-1230.

[60]

Hu, G., Yang, J., Duan, X., Farnood, R., Yang, C., Yang, J., Liu, W., Liu, Q., 2021. Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications. Chem. Eng. J. (Lausanne) 417, 129209.

[61]

Huang, Q., Zou, L., Lan, P., Cheng, F., Jin, Z., Zhang, M., Zhang, Z., 2019. Research on aluminum extracting by roasting coal ash with sodium carbonate. China Coal 10, 70-74.

[62]

Imoisili, P.E., Jen, T.-C., 2022. Microwave-assisted sol-gel template-free synthesis and characterization of silica nanoparticles obtained from South African coal fly ash. Nanotechnol. Rev. 11 (1), 3042-3052.

[63]

Imoisili, P.E., Jen, T.-C., 2023. Synthesis and characterization of amorphous nano silica from South African coal fly ash. Mater. Today: Proc.

[64]

Inada, M., Tsujimoto, H., Eguchi, Y., Enomoto, N., Hojo, J., 2005. Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel 84, 1482-1486.

[65]

Iqbal, A., Sattar, H., Haider, R., Munir, S., 2019. Synthesis and characterization of pure phase zeolite 4A from coal fly ash. J. Clean. Prod. 219, 258-267.

[66]

Jha, V.K., Miyake, M.M.M., 2008. Resource recovery from coal fly ash waste: an overview study. J. Ceram. Soc. Jpn. 116 (2), 167-175.

[67]

Jia, Y., Feng, H., Shen, D., Zhou, Y., Chen, T., Wang, M., Chen, W., Ge, Z., Huang, L., Zheng, S., 2018. High-performance microbial fuel cell anodes obtained from sewage sludge mixed with fly ash. J. Hazard Mater. 354, 27-32.

[68]

Jia, Z., Lin, B., 2021. How to achieve the first step of the carbon-neutrality 2060 target in China: the coal substitution perspective. Energy 233, 121179.

[69]

Jiang, J., Wang, X., Ai, L., 2023. Natural reed leaves derived nickel-cobalt silicate hydroxides with phosphate modification enabling efficient oxygen evolution electrocatalysis. Colloids Surf. A Physicochem. Eng. Asp. 667, 131370.

[70]

Jiang, X., Zhang, Y., Xiao, R., Polaczyk, P., Zhang, M., Hu, W., Bai, Y., Huang, B., 2020. A comparative study on geopolymers synthesized by different classes of fly ash after exposure to elevated temperatures. J. Clean. Prod. 270, 122500.

[71]

Jiang, Y., Zhang, Y., Yan, X., Tian, M., Xiao, W., Tang, H., 2017. A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries. Chem. Eng. J. 330, 1052-1059.

[72]

Jiang, Z.-q., Yang, J., Ma, H.-w., Wang, L., Ma, X., 2015a. Reaction behaviour of Al2O3 and SiO2 in high alumina coal fly ash during alkali hydrothermal process. Trans. Nonferrous Metals Soc. China 25 (6), 2065-2072.

[73]

Jiang, Z., Ma, H., Yang, J., Ma, X., Yuan, J., 2015b. Thermal decomposition mechanism of desilication coal fly ash by low-lime sinter method for alumina extraction. Ferroelectrics 486 (1), 143-155.

[74]

Jing, X., Zhang, Y., Dong, X., Mu, Y., Meng, C., 2021. Manganese silicate nanosheets for quasi-solid-state hybrid supercapacitors. ACS Appl. Nano Mater. 4 (8), 8173-8183.

[75]

Ju, T., Meng, Y., Han, S., Lin, L., Jiang, J., 2021. On the state of the art of crystalline structure reconstruction of coal fly ash: a focus on zeolites. Chemosphere 283, 131010.

[76]

Jumari, A., Yudha, C.S., Widiyandari, H., Lestari, A.P., Rosada, R.A., Santosa, S.P., Purwanto, A., 2020. SiO2/C composite as a high capacity anode material of LiNi0.8Co0.15Al0.05O2 battery derived from coal combustion fly ash. Appl. Sci. 10 (23), 8428.

[77]

Kalair, A., Abas, N., Saleem, M.S., Kalair, A.R., Khan, N., 2020. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 3 (1), e135.

[78]

Karri, S.N., Ega, S.P., Perupogu, V., Srinivasan, P., 2021. Enhancing the electrochemical performance of polyaniline using fly ash of coal waste for supercapacitor application. ChemistrySelect 6 (10), 2576-2589.

[79]

Karri, S.N., Ega, S.P., Srinivasan, P., 2019. Hybrid material of polyaniline incorporated industrial waste of fly ash to enhance the electrode performance of polyaniline in supercapacitor application. J. Solid State Electrochem. 23 (12), 3231-3242.

[80]

Kastanaki, E., Rovithi, A., Iatrou, E., Stratakis, A., Giannis, A., 2023. Conversion of lignite fly ash into synthetic zeolite by hydrothermal, fusion-hydrothermal, and hydrothermal-sonochemical processes. J. Chem. Technol. Biotechnol. 99 (1), 70-80.

[81]

Kim, J.K., Lee, H.D., 2009. Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash. J. Ind. Eng. Chem. 15 (5), 736-742.

[82]

Koç S.O., Galioglu, S., Ozturk, S., Kurç B.A., Koç E., Salamov, B.G., 2018. New mixed conductivity mechanisms in the cold plasma device based on silver-modified zeolite microporous electronic materials. J. Electron. Mater. 47 (5), 2791-2799.

[83]

Koshy, N., Singh, D.N., 2016. Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng. 4 (2), 1460-1472.

[84]

Li, D., Lu, T., Yu, Z., Song, W., Ding, Y., Li, Y., 2023. Experimental investigation on the promotion of CO2 hydrate formation for cold thermal energy storage - effect of gasinducing stirring under different agitation speeds. Green Energy Resour. 1 (4), 100047.

[85]

Li, F., Liu, Q., Li, M., Fang, Y., 2018. Understanding fly-ash formation during fluidizedbed gasification of high-silicon-aluminum coal based on its characteristics. Energy 150, 142-152.

[86]

Li, F., Zhou, C., Yang, P., Wang, B., Hu, J., Wei, J., Yu, Q., 2019. Direct synthesis of carbon nanotubes on fly ash particles to produce carbon nanotubes/fly ash composites. Front. Struct. Civ. Eng. 13, 1405-1414.

[87]

Li, G., Wang, B., Sun, Q., Xu, W.Q., Han, Y., 2017. Adsorption of lead ion on aminofunctionalized fly-ash-based SBA-15 mesoporous molecular sieves prepared via twostep hydrothermal method. Microporous Mesoporous Mater. 252, 105-115.

[88]

Li, H., Huang, S., Yao, Z., Wang, Q., Wang, C.-H., 2021. Flow battery electrolyte from carbon black incineration fly ash: a feasibility study of an environment friendly disposal process. Waste Manage. ( Tucson, Ariz.) 133, 28-36.

[89]

Li, H., Hui, J., Wang, C., Bao, W., Sun, Z., 2014. Extraction of alumina from coal fly ash by mixed-alkaline hydrothermal method. Hydrometallurgy 147-148, 183-187.

[90]

Li, L., Lin, J., Wu, N., Xie, S., Meng, C., Zheng, Y., Wang, X., Zhao, Y., 2022a. Review and outlook on the international renewable energy development. Energy Built Environ. 3 (2), 139-157.

[91]

Li, L., Wu, Y., 2019. Extracting alumina from coal fly ash with ammonium bisulfate leaching. In:Proceedings of the 37th International ICSOBA Conference, pp. 16-20.

[92]

Li, X., Bai, C., Qiao, Y., Wang, X., Yang, K., Colombo, P., 2022b. Preparation, properties and applications of fly ash-based porous geopolymers: a review. J. Clean. Prod. 359, 132043.

[93]

Li, X., Hu, B., Liu, N., Liu, X., Liu, C., He, X., He, S., 2022c. Extraction of alumina from high-alumina fly ash by ammonium sulfate: roasting kinetics and mechanism. RSC Adv. 12 (51), 33229-33238.

[94]

Lin, H.Y., Wan, L., Yang, Y.F., 2012. Aluminium hydroxide ultrafine powder extracted from fly ash. Adv. Mater. Res. 512-515, 1548-1553.

[95]

Lin, S., Jiang, X., Zhao, Y., Yan, J., 2022. Zeolite greenly synthesized from fly ash and its resource utilization: a review. Sci. Total Environ. 851, 158182.

[96]

Liu, C., Ma, S., Zheng, S., Luo, Y., Ding, J., Wang, X., Zhang, Y., 2018a. Combined treatment of red mud and coal fly ash by a hydro-chemical process. Hydrometallurgy 175, 224-231.

[97]

Liu, D., Fang, L., Cheng, F., 2016a. Bisurfactant-assisted preparation of amorphous silica from fly ash. Asia Pac. J. Chem. Eng. 11 (6), 884-892.

[98]

Liu, J.-n., Shen, X.-y., Wu, Y., Zhang, J., Zhai, Y.-c., 2016b. Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology. Int. J. Miner. Metall. Mater. 23 (8), 966-975.

[99]

Liu, X., Wang, J., Yang, G., 2018b. Amorphous nickel oxide and crystalline manganese oxide nanocomposite electrode for transparent and flexible supercapacitor. Chem. Eng. J. 347, 101-110.

[100]

Liu, Y., Yan, C., Zhang, Z., Li, L., Wang, H., Pu, S., 2017. One-step fabrication of novel porous and permeable self-supporting zeolite block from fly ash. Mater. Lett. 196, 328-331.

[101]

Liu, Y., Yan, C., Zhao, J., Zhang, Z., Wang, H., Zhou, S., Wu, L., 2018c. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J. Clean. Prod. 202, 11-22.

[102]

Liu, Z., Li, S., Li, L., Wang, J., Zhou, Y., Wang, D., 2019. One-step high efficiency crystallization of zeolite A from ultra-fine circulating fluidized bed fly ash by hydrothermal synthesis method. Fuel 257, 116043.

[103]

Lu, X., Liu, B., Zhang, Q., Wen, Q., Wang, S., Xiao, K., Zhang, S., 2022. Recycling of coal fly ash in building materials: a review. Minerals 13 (1), 25.

[104]

Luo, Y., Ma, S., Liu, C., Zhao, Z., Zheng, S., Wang, X., 2017. Effect of particle size and alkali activation on coal fly ash and their role in sintered ceramic tiles. J. Eur. Ceram. Soc. 37 (4), 1847-1856.

[105]

Ma, W., Zhang, D., 2018. Multifunctional structural supercapacitor based on graphene and magnesium phosphate cement. J. Compos. Mater. 53 (6), 719-730.

[106]

Ma, Z., Zhang, S., Zhang, H., Cheng, F., 2019. Novel extraction of valuable metals from circulating fluidized bed-derived high-alumina fly ash by acid-alkali-based alternate method. J. Clean. Prod. 230, 302-313.

[107]

Mahmud, M.A., Duong, T., Peng, J., Wu, Y., Shen, H., Walter, D., Nguyen, H.T., Mozaffari, N., Tabi, G.D., Catchpole, K.R., Weber, K.J., White, T.P., 2021. Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D-3D perovskite solar cells: a review. Adv. Funct. Mater. 32 (3), 2009164.

[108]

Malico, I., Nepomuceno Pereira, R., Gonçalves, A.C., Sousa, A.M.O., 2019. Current status and future perspectives for energy production from solid biomass in the European industry. Renewable Sustainable Energy Rev. 112, 960-977.

[109]

Martinović S., Vlahović M., Ponomaryova, E., Ryzhkov, I.V., Jovanović M., Bušatlić I., Husović T.V., Stević Z., 2017. Electrochemical behavior of supercapacitor electrodes based on activated carbon and fly ash. Int. J. Electrochem. Sci. 12 (8), 7287-7299.

[110]

McIlwaine, N., Foley, A.M., Morrow, D.J., Al Kez, D., Zhang, C., Lu, X., Best, R.J., 2021. A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems. Energy 229, 120461.

[111]

Mohanty, R., Mishra, S.K., Mohapatra, S.S., al, e., 2021. Extraction of Silica (SiO2) from Coal Fly Ash by Leaching and Sintering Technology. Springer Singapore, Singapore.

[112]

Möller, K., Bein, T., 2019. Degradable drug carriers: vanishing mesoporous silica nanoparticles. Chem. Mater. 31 (12), 4364-4378.

[113]

Mu, Y., Zhang, Y., Pei, X., Dong, X., Kou, Z., Cui, M., Meng, C., 2022. Dispersed FeOx nanoparticles decorated with Co2SiO4 hollow spheres for enhanced oxygen evolution reaction. J. Colloid Interface Sci. 611, 235-245.

[114]

Mugnaioli, E., Lanza, A.E., Bortolozzi, G., Righi, L., Merlini, M., Cappello, V., Marini, L., Athanassiou, A., Gemmi, M., 2020. Electron diffraction on flash-frozen cowlesite reveals the structure of the first two-dimensional natural zeolite. ACS Cent. Sci. 6 (9), 1578-1586.

[115]

Murayama, N., Yamamoto, H., Shibata, J., 2002. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process. 64, 1-17.

[116]

Murukutti, M.K., Jena, H., 2022. Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs(t) and Sr(2t) from simulated nuclear waste. J. Hazard Mater. 423 (Pt A), 127085.

[117]

Mushtaq, F., Zahid, M., Bhatti, I.A., Nasir, S., Hussain, T., 2019. Possible applications of coal fly ash in wastewater treatment. J. Environ. Manag. 240, 27-46.

[118]

Naranov, E.R., Dement’ev, K.I., Gerzeliev, I.M., Kolesnichenko, N.V., Roldugina, E.A., Maksimov, A.L., 2019. The role of zeolite catalysis in modern petroleum refining: contribution from domestic technologies. Petrol. Chem. 59 (3), 247-261.

[119]

Padilla, R., Sohn, H.Y., 1985. Sintering kinetics and alumina yield in lime-soda sinter process for alumina from coal wastes. Metall. Trans. A B 16, 385-395.

[120]

Pan, J., Hassas, B.V., Rezaee, M., Zhou, C., Pisupati, S.V., 2021. Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes. J. Clean. Prod. 284, 124725.

[121]

Pan, J., Nie, T., Vaziri Hassas, B., Rezaee, M., Wen, Z., Zhou, C., 2020. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching. Chemosphere 248, 126112.

[122]

Park, J.H., Kweon, S., Jang, D., Park, M.B., Kang, B., Park, Y.D., 2022. Organic-transistorbased NO2 sensor fabricated with surface-modified faujasite-type zeolite as an efficient nanochannel for gas analytes. ACS Appl. Electron. Mater. 4 (7), 3686-3693.

[123]

Patel, B.M.B., Revanasiddappa, M., Rangaswamy, D.R., Manjunatha, S., Ravikiran, Y.T., 2022. Electrical conductivity and EMI shielding studies of iron-decorated polypyrrole-fly ash nanocomposites. Mater. Today: Proc. 49, 2253-2259.

[124]

Pei, X., Yi, S., Zhao, Y., Mu, Y., Yu, Y., Cui, M., Meng, C., Huang, C., Zhang, Y., 2022a. Nickel oxide nanoparticles dispersed on biomass-derived amorphous carbon/cobalt silicate support accelerate the oxygen evolution reaction. J. Colloid Interface Sci. 616, 476-487.

[125]

Pei, X., Zhang, Y., Mu, Y., Cui, M., Tian, F., Meng, C., 2022b. Cobalt oxide decorated three-dimensional amorphous carbon/cobalt silicate composite derived from bamboo leaves enables the enhanced oxygen evolution reaction. Chem. Eng. Sci. 251, 117490.

[126]

Petrov, M., Lovchinov, K., Slavov, L., Hikov, T., Tyutyundzhiev, N., 2021. Electrochemically-stabilized carbon materials for supercapacitor prototypes. J. Phys.: Conf. Ser. 1859, 012065.

[127]

Pickl, M.J., 2019. The renewable energy strategies of oil majors - from oil to energy? Energy Strategy Rev. 26, 100370.

[128]

Prabhu, R., Jeevananda, T., Reddy, K.R., Raghu, A.V., 2021. Polyaniline-fly ash nanocomposites synthesized via emulsion polymerization: physicochemical, thermal and dielectric properties. Mater. Sci. Energy Tech. 4, 107-112.

[129]

Pransisco, P., Balbir Singh, M.S., Shuaib, M., Shukur, M.F., Joseph, E., 2020. 3D graphene/fly ash waste material for hybrid supercapacitor electrode: specific capacitance analysis. Mater. Werkst. 51 (6), 713-718.

[130]

Qin, R., Zeng, H.C., 2018. Design and synthesis of supported nanoscale metal-organic frameworks: transformation from transitionm etal silicates. ACS Sustainable Chem. Eng. 6, 14979-14988.

[131]

Qiu, W., Xiao, H., Yu, M., Li, Y., Lu, X., 2018. Surface modulation of NiCo2O4 nanowire arrays with significantly enhanced reactivity for ultrahigh-energy supercapacitors. Chem. Eng. J. 352, 996-1003.

[132]

Querol, X., Plana, F., Alastuey, A., López-Soler, A., 1997. Synthesis of Na-zeolites from fly ash. Fuel 76, 793-799.

[133]

Rambau, K.M., Musyoka, N.M., Panek, R., Franus, W., Wdowin, M., Manyala, N., 2021. Preparation of coal fly ash derived metal organic frameworks and their carbon derivatives. Mater. Today Commun. 27, 102433.

[134]

Rambau, K.M., Tarimo, D.J., Fasakin, O., Musyoka, N.M.M., Ncholu, 2022. Asymmetric supercapacitor based on novel coal fly ash derived metal-organic frameworks as positive electrode and its derived carbon as negative electrode. J. Appl. Electrochem. 52 (5), 821-834.

[135]

Rodríguez, E.D., Bernal, S.A., Provis, J.L., Paya, J., Monzo, J.M., Borrachero, M.V., 2013. Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cem. Concr. Compos. 35 (1), 1-11.

[136]

Saenko, E.V., Huo, Y., Shamsutdinov, A.S., Kondrashova, N.B., Valtsifer, I.V., Valtsifer, V.A., 2020. Mesoporous hydrophobic silica nanoparticles as flow-enhancing additives for fire and explosion suppression formulations. ACS Appl. Nano Mater. 3 (3), 2221-2233.

[137]

Samantaray, S., Mishra, S.K., Mohapatra, S.S., Pattanayak, B., 2021. Extraction of SiO2 from coal fly ash by using sodium meta silicate leaching and sintering technology. Advances in Thermofluids and Renewable Energy. Springer, Singapore.

[138]

Shi, Y., Jiang, K.-x., Zhang, T.-a., 2020. Cleaner extraction of alumina from coal fly ash: baking-electrolysis method. Fuel 273, 117697.

[139]

Shirkhanloo, S., Najafi, M., Kaushal, V., Rajabi, M., 2021. A comparative study on the effect of class C and class F fly ashes on geotechnical properties of high-plasticity clay. Civ. Eng. 2 (4), 1009-1018.

[140]

Sivalingam, S., Sen, S., 2018. Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X. Appl. Surf. Sci. 455, 903-910.

[141]

Suganuma, S., Katada, N., 2020. Innovation of catalytic technology for upgrading of crude oil in petroleum refinery. Fuel Process. Technol. 208, 106518.

[142]

Sun, B., Lim, A.M.H., Zeng, H.C., 2023a. Three-dimensional assemblages of metal silicate for catalytic CO2 conversion to methanol and adsorptive pollutant removal. ACS Sustainable Chem. Eng. 11 (22), 8326-8336.

[143]

Sun, B., Nie, Z., Gao, F., Liu, Y., Wang, Z., Gong, X., 2015a. Cumulative exergy demand analysis of the primary aluminum produced in China and its natural resource-saving potential in transportation. Int. J. Life Cycle Assess. 20 (8), 1048-1060.

[144]

Sun, H.-l., Wang, B., Zhang, J.-x., Zong, S.-f., Liu, J.-j., 2015b. Secondary reaction mechanism of leaching process of calcium aluminate slag. Trans. Nonferrous Metals Soc. China 25 (4), 1334-1340.

[145]

Sun, L., Liu, Y., Shao, R., Wu, J., Jiang, R., Jin, Z., 2022. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 46, 482-502.

[146]

Sun, L., Luo, K., Fan, J., Lu, H., 2017. Experimental study of extracting alumina from coal fly ash using fluidized beds at high temperature. Fuel 199, 22-27.

[147]

Sun, Q., Wang, N., Yu, J., 2021. Advances in catalytic applications of zeolite-supported metal catalysts. Adv. Mater. 33 (51), e2104442.

[148]

Sun, S., Liu, F., Zhang, L., Fan, X., 2018. One-step process based on the order of hydrothermal and alkaline treatment for producing lignin with high yield and antioxidant activity. Ind. Crops Prod. 119, 260-266.

[149]

Sun, Y., Pan, A., Ma, Y., Chang, J., 2023b. Extraction of alumina and silica from highsilica bauxite by sintering with sodium carbonate followed by two-step leaching with water and sulfuric acid. RSC Adv. 13 (33), 23254-23266.

[150]

Szerement, J., Szatanik-Kloc, A., Jarosz, R., Bajda, T., Mierzwa-Hersztek, M., 2021. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. J. Clean. Prod. 311, 127461.

[151]

Tabit, K., Hajjou, H., Waqif, M., Sa^adi, L., 2020. Effect of CaO/SiO2 ratio on phase transformation and properties of anorthite-based ceramics from coal fly ash and steel slag. Ceram. Int. 46 (6), 7550-7558.

[152]

Tan, K.C., Chua, Y.S., He, T., Chen, P., 2023. Strategies of thermodynamic alternation on organic hydrogen carriers for hydrogen storage application: a review. Green Energy Resour. 1 (2), 100020.

[153]

Tian, G., Dang, S., Kefeng, Z., Bingxue, Y., Xue, G., Meng, J., 2023. Lamellar carbon composited cobalt iron silicate with a two-dimensional structure toward enhanced electrochemical properties for supercapacitors. ACS Appl. Energy Mater. 6 (4), 2207-2218.

[154]

Tian, X., Chen, Z., Hou, J., Li, Z., 2022. Sustainable utilization method of using coal gasification fine ash to prepare activated carbon for supercapacitor. J. Clean. Prod. 363, 132524.

[155]

Tomar, A., Sharma, T., Singh, S., 2020. Strength properties and durability of clay soil treated with mixture of nano silica and Polypropylene fiber. Mater. Today: Proc. 26, 3449-3457.

[156]

Unis Ahmed, H., Mohammed, A.S., Mohammed, A.A., 2023. Fresh and mechanical performances of recycled plastic aggregate geopolymer concrete modified with Nanosilica: experimental and computational investigation. Construct. Build. Mater. 394, 132266.

[157]

Upadhyay, S.N., Satrughna, J.A.K., Pakhira, S., 2021. Recent advancements of twodimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage. Emergent Mater 4 (4), 951-970.

[158]

Valeev, D., Kunilova, I., Alpatov, A., Mikhailova, A., Goldberg, M., Kondratiev, A., 2019. Complex utilisation of ekibastuz brown coal fly ash: iron & carbon separation and aluminum extraction. J. Clean. Prod. 218, 192-201.

[159]

Van der Merwe, E.M., Gray, C.L., Castleman, B.A., Mohamed, S., Kruger, R.A., Doucet, F.J., 2017. Ammonium sulphate and/or ammonium bisulphate as extracting agents for the recovery of aluminium from ultrafine coal fly ash. Hydrometallurgy 171, 185-190.

[160]

Vashistha, P., Singh, S.K., Dutt, D., Kumar, V., 2019. Sustainable utilization of paper mill solid wastes via synthesis of nano silica for production of belite based clinker. J. Clean. Prod. 224, 557-565.

[161]

Venkatesan, S.V., Nandy, A., Karan, K., Larter, S.R., Thangadurai, V., 2022. Recent advances in the unconventional design of electrochemical energy storage and conversion devices. Electrochem. Energy Rev. 5 (4), 16.

[162]

Vilakazi, A.Q., Ndlovu, S., Chipise, L., Shemi, A., 2022. The recycling of coal fly ash: a review on sustainable developments and economic considerations. Sustainability 14 (4), 1958.

[163]

Wang, H., Feng, Q., Liu, K., 2016a. The dissolution behavior and mechanism of kaolinite in alkali-acid leaching process. Appl. Clay Sci. 132-133, 273-280.

[164]

Wang, H., Wang, J., Li, J., Li, Z., Li, W., Yang, M., Shen, L., 2023a. Mechanical activation of coal fly ash for the improvement of alumina-silica separation during reduction roasting-alkaline leaching process. Jom 1-11.

[165]

Wang, H., Wang, M., Wang, J., 2021a. Nickel silicate hydroxide on hierarchically porous carbon derived from rice husks as high-performance electrode material for supercapacitors. Int. J. Hydrogen Energy 46 (71), 35351-35364.

[166]

Wang, H., Wang, M., Zhang, J., Wang, N., Wang, J., Yang, J., 2022a. Preparation of fly ash-based cobalt-iron silicate as supercapacitor electrode material. Chem. Eng. J. 434, 134661.

[167]

Wang, H., Xu, Z., Wu, D., Tan, Q., Xie, Y., Li, C., 2013. Preparation of artificial zeolite from fly ash by two-step hydrothermal method. Environ. Prot. Chem. Indus. 3, 272-275.

[168]

Wang, J., Zhan, P., Zhang, D., 2023b. Redox active cement-based electrolyte towards high-voltage asymmetric solid supercapacitor. Cem. Concr. Compos. 138, 104987.

[169]

Wang, L., Duan, G., Zhu, J., Chen, S.M., Liu, X.H., Palanisamy, S., 2016b. Mesoporous transition metal oxides quasi-nanospheres with enhanced electrochemical properties for supercapacitor applications. J. Colloid Interface Sci. 483, 73-83.

[170]

Wang, M., Wang, H., Wang, N., Liu, X., Wang, S., Yang, J., 2022b. The introduction of oxygen vacancy defects in Al-doped transition metal silicates derived from fly ash for high-performance aqueous potassium ion capacitor. Electrochim. Acta 434, 141310.

[171]

Wang, M., Wang, H., Zhang, X., Chen, D., Wang, N., Qin, M., Yang, J., 2023c. Co2SiO4/CoO heterostructure anchored on graphitized carbon derived from rice husks with hierarchical pore as electrode material for supercapacitor. Appl. Surf. Sci. 636.

[172]

Wang, P., Li, L., Wei, D., 2014. Kinetics analysis on mixing calcination process of fly ash and ammonium sulfate. Chin. J. Chem. Eng. 22 (9), 1027-1032.

[173]

Wang, P., Liu, H., Zheng, F., Liu, Y., Kuang, G., Deng, R., Li, H., 2021b. Extraction of aluminum from coal fly ash using pressurized sulfuric acid leaching with emphasis on optimization and mechanism. Jom 73 (9), 2643-2651.

[174]

Wang, Q., Li, Y., Meng, T., Huang, B., Hu, L., Su, H., Meng, C., Tong, Y., 2021c. Engineering heterostructure-incorporated metal silicates anchored on carbon nanotubes for highly durable lithium storage. ACS Appl. Energy Mater. 4 (2), 1548-1559.

[175]

Wang, S., Wang, H., Chen, Z., Ji, R., Liu, L., Wang, X., 2019. Fabrication and characterization of porous cordierite ceramics prepared from fly ash and natural minerals. Ceram. Int. 45 (15), 18306-18314.

[176]

Wang, T., Ma, S., Wang, X., Hong, T., Luo, Y., 2020a. A 100% high-aluminum fly ashbased high-density mullite ceramic with a triple microstructure: preparation and mechanical characterization. Construct. Build. Mater. 239, 117761.

[177]

Wang, X., Fu, C., Feng, Z., Huo, H., Yin, X., Gao, G., Yin, G., Ci, L., Tong, Y., Jiang, Z., Wang, J., 2022c. Fly ash/polymer composite electrolyte with internal binding interaction enables highly-stable extrinsic-interfaces of all-solid-state lithium batteries. Chem. Eng. J. 428, 131041.

[178]

Wang, Y., Yao, M., Ma, R., Yuan, Q., Yang, D., Cui, B., Ma, C., Liu, M., Hu, D., 2020b. Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J. Mater. Chem. A 8 (3), 884-917.

[179]

Wang, M., Wang, H., Wang, J., Zhang, J., 2021d. In situ generated iron silicate on porous carbon derived from rice husks for high-performance supercapacitor and full utilization of resource. J. Electroanal. Chem. 905, 115960.

[180]

Wang, W., Zhang, Y., 2021. Technique status and progress of alumina extraction from coal fly ash. Nonferr. Metals Eng. 10, 79-91.

[181]

Wei, C., Cheng, S., Zhu, F., Tan, X., Li, W., Zhang, P., Miao, S., 2018. Digesting highaluminum coal fly ash with concentrated sulfuric acid at high temperatures. Hydrometallurgy 180, 41-48.

[182]

Wen, J., Dong, H., Zeng, G., 2018. Application of zeolite in removing salinity/sodicity from wastewater: a review of mechanisms, challenges and opportunities. J. Clean. Prod. 197, 1435-1446.

[183]

Wirth, X., Glatstein, D.A., Burns, S.E., 2019. Mineral phases and carbon content in weathered fly ashes. Fuel 236, 1567-1576.

[184]

Wu, C.-y., Yu, H.-f., Zhang, H.-f., 2012. Extraction of aluminum by pressure acid-leaching method from coal fly ash. Trans. Nonferrous Metals Soc. China 22 (9), 2282-2288.

[185]

Wu, Y., 2017. Alumina extraction from CFB ash by limestone sintering. Environ. Prot. Circ. Econ. 4, 38-44.

[186]

Wu, Y., Yang, X., Li, L., Wang, Y., Li, M., 2019. Kinetics of extracting alumina by leaching coal fly ash with ammonium hydrogen sulfate solution. Chem. Pap. 73 (9), 2289-2295.

[187]

Xiang, J., Li, J., Wang, G., Xue, Q., He, J., Liu, S., Hu, Q., 2023. Extraction of silica from fly ash and modification by silane coupling agent. Bullet. Chinese Ceram. Soci. 3, 989-1000.

[188]

Xiong, C., Zheng, C., Jiang, X., Xiao, X., Wei, H., Zhou, Q., Ni, Y., 2023. Recent progress of green biomass based composite materials applied in supercapacitors, sensors, and electrocatalysis. J. Energy Storage 72, 108633.

[189]

Xu, H., Liu, C., Mi, X., Wang, Z., Han, J., Zeng, G., Liu, P., Guan, Q., Ji, H., Huang, S., 2021. Extraction of lithium from coal fly ash by low-temperature ammonium fluoride activation-assisted leaching. Sep. Purif. Technol. 279, 119757.

[190]

Xu, Z., Zhang, M., Zhu, J., Min, F., 2009. Extraction of nano-α-Al2O3 and SiO2 from fly ash by low temperature calcination. Non-Metallic Mines 1, 27-30.

[191]

Yadav, P., Raju, M.K., Samudrala, R.K., Gangadhar, M., Pani, J., 2023. Cost-effective akermanite derived from industrial waste for working electrodes in supercapacitor applications. New J. Chem. 4, 3255.

[192]

Yadav, V.K., Fulekar, M.H., 2019. Green synthesis and characterization of amorphous silica nanoparticles from fly ash. Mater. Today: Proc. 18, 4351-4359.

[193]

Yadav, V.K., Fulekar, M.H., 2020. Advances in methods for recovery of ferrous, alumina, and silica nanoparticles from fly ash waste. Ceramics 3 (3), 384-420.

[194]

Yan, F., Jiang, J., Li, K., Liu, N., Chen, X., Gao, Y., Tian, S., 2017. Green synthesis of nanosilica from coal fly ash and its stabilizing effect on CaO sorbents for CO2 capture. Environ. Sci. Technol. 51 (13), 7606-7615.

[195]

Yan, W., Yu-chun, Z., Lai-shi, L., Jia-dong, W., Wen-ning, M., 2007. Preparation of highpurity Al2O3 and superfine SiO2 from fly ash by the new acid and alkali combination method. Light Met. 9, 24-27.

[196]

Yang, C., Wang, T., Liu, P., Shi, H., Xue, D., 2009. Preparation of well-defined blackberrylike polypyrrole/fly ash composite microspheres and their electrical conductivity and magnetic properties. Curr. Opin. Solid State Mater. Sci. 13 (5-6), 112-118.

[197]

Yang, G., Park, S.J., 2019. Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials 12 (7), 1177.

[198]

Yang, H., Monasterio, M., Zheng, D., Cui, H., Tang, W., Bao, X., Chen, X., 2021a. Effects of nano silica on the properties of cement-based materials: a comprehensive review. Construct. Build. Mater. 282, 122715.

[199]

Yang, H., Qiao, Y., Chang, Z., Deng, H., Zhu, X., Zhu, R., Xiong, Z., He, P., Zhou, H., 2021b. Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv. Mater. 33 (38), e2102415.

[200]

Yang, J., Sun, H., Peng, T., Zeng, L., Chao, L., 2022. Separation of alumina from aluminum-rich coal fly ash using NaOH molten salt calcination and hydrochemical process. Clean Technol. Environ. Policy 24 (5), 1507-1519.

[201]

Yang, L., Qian, X., Yuan, P., Bai, H., Miki, T., Men, F., Li, H., Nagasaka, T., 2019a. Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3. J. Clean. Prod. 212, 250-260.

[202]

Yang, Q.-c., Ma, S.-h., Zheng, S.-l., Zhang, R., 2014. Recovery of alumina from circulating fluidized bed combustion Al-rich fly ash using mild hydrochemical process. Trans. Nonferrous Metals Soc. China 24 (4), 1187-1195.

[203]

Yang, T., Han, C., Liu, H., Yang, L., Liu, D., Tang, J., Luo, Y., 2019b. Synthesis of Na-X zeolite from low aluminum coal fly ash: characterization and high efficient As(V) removal. Adv. Powder Technol. 30 (1), 199-206.

[204]

Yang, Z., Lv, Z., Pan, X., Yu, H., 2020. Thermal decomposition mechanism of desilication coal fly ash by low-lime sinter method for alumina extraction. Nonferrous Met. 9, 64-68t96.

[205]

Yao, G., Lei, J., Zhang, X., Sun, Z., Zheng, S., 2018. One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite. Materials 11 (6), 906.

[206]

Yao, Z.T., Xia, M.S., Sarker, P.K., Chen, T., 2014. A review of the alumina recovery from coal fly ash, with a focus in China. Fuel 120, 74-85.

[207]

Yin, Y., Xu, P., Fang, J., Yang, J., 2020. Effect of fly ash cenosphere@SiO2 core-shell microspheres on physical properties and microstructures of vitrified bond diamond tools. Diam. Relat. Mater. 103.

[208]

Yit, Siew Ng, T., Leng, Chew, T., Fong, Yeong, Y., 2019. Synthesis of small pore zeolite via ultrasonic-assisted hydrothermal synthesis. Mater. Today: Proc. 16, 1935-1941.

[209]

Yu, H.-y., Pan, X.-l., Dong, K.-w., Wu, Y., 2019a. Effect of P addition on mineral transition of CaO-Al2O3-SiO2 system during high-temperature sintering. Trans. Nonferrous Metals Soc. China 29 (3), 650-656.

[210]

Yu, Z.-R., Li, S.-N., Zang, J., Zhang, M., Gong, L.-X., Song, P., Zhao, L., Zhang, G.-D., Tang, L.-C., 2019b. Enhanced mechanical property and flame resistance of graphene oxide nanocomposite paper modified with functionalized silica nanoparticles. Compos. B Eng. 177, 107347.

[211]

Zhan, P., Xu, J., Wang, J., Zuo, J., He, Z., 2023. Structural supercapacitor electrolytes based on cementitious composites containing recycled steel slag and waste glass powders. Cem. Concr. Compos. 137, 104924.

[212]

Zhan, X., Wang, L., Wang, J., Yue, Z., Deng, R., Wang, Y., Xu, X., 2022. Roasting mechanism of lightweight low-aluminum-silicon ceramisite derived from municipal solid waste incineration fly ash and electrolytic manganese residue. Waste Manag. 153, 264-274.

[213]

Zhang, D., Cao, J., Gu, C., Zhang, X., Insin, N., Wang, S., Pattananuwat, P., Zeng, Z., Qin, J., 2022a. Rational design of fly ash-based composites for sustainable lithiumion battery anodes. Electrochim. Acta 410, 140035.

[214]

Zhang, F., An, Y., Zhai, W., Gao, X., Feng, J., Ci, L., Xiong, S., 2015. Nanotubes within transition metal silicate hollow spheres: facile preparation and superior lithium storage performances. Mater. Res. Bull. 70, 573-578.

[215]

Zhang, J., Zhang, C., Liu, X., Quan, L., Su, H., Hu, Q., Chen, X., 2023a. Study on the preparation of ceramic membrane support and its Fe migration rule by highaluminum fly ash as raw material. Int. J. Appl. Ceram. Technol. 21 (2), 910-922.

[216]

Zhang, R., Ma, S., Yang, Q., Zheng, S., Zhang, Y., Kim, N., Hong, S., 2011. Research on NaCaHSiO4 decomposition in sodium hydroxide solution. Hydrometallurgy 108 (3-4), 205-213.

[217]

Zhang, S., Yan, H., Wang, Y., Niu, F., Guo, T., Zhang, Y., Li, Z., Wang, X., Meng, C., 2022b. Butterfly-like metal-silicates derived from natural green algaes for supercapacitors with enhanced electrochemical properties by alkali etching. J.Anal. Appl. Pyrol. 167, 105687.

[218]

Zhang, S., Zhang, T., Dong, B., Chen, J., Meng, C., 2023b. Metal silicates for supercapacitors derived from the multistep treatment of natural green algaes. J. Colloid Interface Sci. 630 (Pt B), 11-20.

[219]

Zhang, S., Zheng, J., Wei, J., Zhang, Y., Niu, F., Wang, Y., Yan, H., Li, Z., Meng, C., 2022c. Alkali etching zinc andmanganese silicates derived fromnatural green algaes for supercapacitors with enhanced electrochemical properties. J. Colloid Interface Sci. 623, 135-145.

[220]

Zhang, X., Wang, D., Qiu, X., Ma, Y., Kong, D., Müllen, K., Li, X., Zhi, L., 2020. Stable highcapacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 11 (1), 3826.

[221]

Zhang, Y., Wang, C., Chen, X., Dong, X., Meng, C., Huang, C., 2021a. Bamboo leaves as sustainable sources for the preparation of amorphous carbon/iron silicate anode and nickel-cobalt silicate cathode materials for hybrid supercapacitors. ACS Appl. Energy Mater. 4 (9), 9328-9340.

[222]

Zhang, Y., Wang, C., Dong, X., Jiang, H., Hu, T., Meng, C., Huang, C., 2021b. Alkali etching metal silicates derived from bamboo leaves with enhanced electrochemical properties for solid-state hybrid supercapacitors. Chem. Eng. J. 417, 127964.

[223]

Zhang, Y., Wang, C., Jiang, H., Wang, Q., Zheng, J., Meng, C., 2019. Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors. Chem. Eng. J. 375, 121938.

[224]

Zhang, Z., Ding, T., Zhou, Q., Sun, Y., Qu, M., Zeng, Z., Ju, Y., Li, L., Wang, K., Chi, F., 2021c. A review of technologies and applications on versatile energy storage systems. Renewable Sustainable Energy Rev. 148, 111263.

[225]

Zhao, Y., Song, J., Zhu, P., Wang, W., Song, Z., Ding, Y., 2023. Carnot battery for energy storage: advancements and challenges. Green Energy Resour. 1 (4), 100048.

[226]

Zhao, Z., Guo, K., Wang, X., 2022. A binder prepared by low-reactivity blast furnace slags for cemented paste backfill: influence of super-fine fly ash and chemical additives. Construct. Build. Mater. 327, 126988.

[227]

Zhao, Z., Xue, Y., Xu, G., Chen, D., Zhou, J., Liu, P., Han, S., Lin, H., 2017. Reaction conditions of ultrasound-assisted production of biodiesel: a review. Int. J. Energy Res. 41 (8), 1081-1095.

[228]

Zheng, G., Huang, Z., Liu, Z., 2021. Cooperative utilization of beet pulp and industrial waste fly ash to produce N/P/O self-co-doped hierarchically porous carbons for highperformance supercapacitors. J. Power Sources 482, 228935.

[229]

Zhou, G.-t., Wang, Y.-l., Qi, T.-g., Zhou, Q.-s., Liu, G.-h., Peng, Z.-h., Li, X.-b., 2023. Toward sustainable green alumina production: a critical review on process discharge reduction from gibbsitic bauxite and large-scale applications of red mud. J. Environ. Chem. Eng. 11 (2), 109433.

[230]

Zhou, H., Bhattarai, R., Li, Y., Si, B., Dong, X., Wang, T., Yao, Z., 2022. Towards sustainable coal industry: turning coal bottom ash into wealth. Sci. Total Environ. 804, 149985.

[231]

Zou, C., Xiong, B., Xue, H., Zheng, D., Ge, Z., Wang, Y., Jiang, L., Pan, S., Wu, S., 2021. The role of new energy in carbon neutral. Petrol. Explor. Dev. 48 (2), 480-491.

AI Summary AI Mindmap
PDF (6039KB)

274

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/