Microwave plasma setups for CO2 conversion: A mini-review

Huacheng Zhu , Yuqiang Huang , Shumeng Yin , Wencong Zhang

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100061

PDF (2500KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100061 DOI: 10.1016/j.gerr.2024.100061
Reviews
research-article

Microwave plasma setups for CO2 conversion: A mini-review

Author information +
History +
PDF (2500KB)

Abstract

Global warming poses one of the most critical challenges of the 21st century, leading to significant environmental damage. The extraction and combustion of fossil fuels release substantial amounts of greenhouse gases, thereby contributing to climate change. In response to this pressing issue, plasma-based conversion of carbon dioxide has emerged as a prominent and widely explored solution. Among the various plasma technologies, microwave plasma setups have garnered considerable attention due to their exceptional ability to decompose carbon dioxide, facilitate the dry reforming of methane and reverse water gas shift. These setups are renowned for their high degree of ionization and generation of non-equilibrium plasma, making them a clean and highly efficient method for treating greenhouse gases. However, researchers often face challenges in selecting the appropriate microwave plasma reactors. Thus, the primary objective of this paper is to provide guidance on microwave plasma setups. It is achieved by illustrating experimental configurations based on the microwave operating mechanism and presenting a classification of microwave plasma sources according to their operating principles. Moreover, specific experimental operations are discussed within the scope of our analysis, offering valuable insights to researchers in this field.

Keywords

Microwave plasma / Experimental setups / CO2 reactions / Cooling methods

Cite this article

Download citation ▾
Huacheng Zhu, Yuqiang Huang, Shumeng Yin, Wencong Zhang. Microwave plasma setups for CO2 conversion: A mini-review. Green Energy and Resources, 2024, 2(1): 100061 DOI:10.1016/j.gerr.2024.100061

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported in part by the National Key Research and Development Program of China(Grant No. 2023YFB4603500), in part by the National Natural Science Foundation of China (Grant No. 62001130), in part by the Guizhou Science and Technology Plan from Guizhou Provincial Department of Science and Technology (Grant No. QKHJC-ZK [2021] 297), in part by the Guizhou Province High-Level Innovative Talent Program (Grant No.GCC [2023]004), in part by Guiyang University under Grant GYU-KY-(2023). We would like to acknowledge the valuable contributions and support from various individuals and organizations throughout the research process. We are grateful to Kim et al. for granting permission to use the figures from their paper “Carbon dioxide conversion in an atmospheric pressure Microwave plasma touch: Improving efficiencies by enhancing afterglow quenching”. We are grateful to D'Isa et al. for granting permission to use the figures from their paper “Performance analysis of a 2.45 GHz microwave plasma torch for CO2 decomposition in gas swirl configuration”. We are grateful to Uhm et al. for granting permission to use the figures from their paper “Carbon dioxide elimination and regeneration of resources in a microwave plasma torch”. We are grateful to Mohsenian for granting permission to use the figures from their paper “Carbon dioxide conversion by solar-enhanced microwave plasma: Effect of specific power and argon/nitrogen carrier gases”. We are grateful to Vesel et al. for granting permission to use the figures from their paper “Dissociation of CO2 molecules in microwave plasma”. We are grateful to Chen et al. for granting permission to use the figures from their paper “Plasma assisted catalytic decomposition of CO2”. We are grateful to Chun et al. for granting permission to use the figures from their paper “CO2 Microwave Plasma-Catalytic Reactor for Efficient Reforming of Methane to Syngas” and “Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure”. We are grateful to Below et al. for granting permission to use the figures from their paper “Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations”. We are grateful to Mansfeld for granting permission to use the figures from their paper “Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure”. We are grateful to Qin et al. for granting permission to use the figures from their paper “Conversion of CO2 in a low-powered atmospheric microwave plasma: In-depth study on the trade-off between CO2 conversion and energy efficiency”. We are grateful to Carbone et al. for granting permission to use the figures from their paper “Spatio-temporal dynamics of a pulsed microwave argon plasma: ignition and afterglow”. We are grateful to Van Alphen et al. for granting permission to use the figures from their paper “Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas”. The inclusion of these figures has greatly enhanced the clarity and effectiveness of this work.

References

[1]

Alawi, N.M., Sunarso, J., Pham, G.H., Barifcani, A., Nguyen, M.H., Liu, S.M., 2020. Comparative study on the performance of microwave-assisted plasma DRM in nitrogen and argon atmospheres at a low microwave power. J. Ind. Eng. Chem. 85, 118-129. https://doi.org/10.1016/j.jiec.2020.01.032.

[2]

Alrafei, B., Delgado, J., Ledoux, A., Polaert, I., 2019. Synergetic effect OF microwave plasma and catalysts IN CO2 hydrogenation into high added-value molecules. In: 17th International Conference on Microwave and High Frequency Heating (AMPERE). Univ Politecnica Valencia, Polytechn City Innovat, Valencia, SPAIN. https://doi.org/10.4995/Ampere2019.2019.980.

[3]

Ashford, B., Tu, X., 2017. Non-thermal plasma technology for the conversion of CO2. Curr. Opin. Green Sustainable Chem. 3, 45-49. https://doi.org/10.1016/j.cogsc.2016.12.001.

[4]

Belov, I., Vermeiren, V., Paulussen, S., Bogaerts, A., 2018. Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations. J. CO2 Util. 24, 386-397. https://doi.org/10.1016/j.jcou.2017.12.009.

[5]

Berthelot, A., Bogaerts, A., 2018. Pinpointing energy losses in CO2 plasmas - effect on CO2 conversion. J. CO2 Util. 24, 479-499. https://doi.org/10.1016/j.jcou.2018.02.011.

[6]

Bogaerts, A., Kozak, T., van Laer, K., Snoeckx, R., 2015. Plasma-based conversion of CO2: current status and future challenges. Faraday Discuss 183, 217-232. https://doi.org/10.1039/c5fd00053j.

[7]

Bogaerts, A., Berthelot, A., Heijkers, S., Kolev, S., Snoeckx, R., Sun, S., Trenchev, G., Van Laer, K., Wang, W., 2017. CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design. Plasma Sources Sci. Technol. 26 (6). https://doi.org/10.1088/1361-6595/aa6ada.

[8]

Bogaerts, A., Centi, G., 2020. Plasma technology for CO2 conversion: a personal perspective on prospects and gaps. Front. Energy Res. 8. https://doi.org/10.3389/fenrg.2020.00111.

[9]

Bongers, W., Bouwmeester, H., Wolf, B., Peeters, F., Welzel, S., van den Bekerom, D., den Harder, N., Goede, A., Graswinckel, M., Groen, P.W., Kopecki, J., Leins, M., van Rooij, G., Schulz, A., Walker, M., van de Sanden, R., 2017. Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Process. Polym. 14 (6). https://doi.org/10.1002/ppap.201600126.

[10]

Britun, N., Silva, T., Chen, G., Godfroid, T., van der Mullen, J., Snyders, R., 2018. Plasmaassisted CO2 conversion: optimizing performance via microwave power modulation. J. Phys. Appl. Phys. 51 (14). https://doi.org/10.1088/1361-6463/aab1ad.

[11]

Britun, N., Godfroid, T., Snyders, R., 2020. Insights into CO2 conversion in pulsed microwave plasma using optical spectroscopy. J. CO2 Util. 41. https://doi.org/10.1016/j.jcou.2020.101239.

[12]

Budukva, S.V., Uvarkina, D.D., Klimov, O.V., Noskov, A.S., 2023. Deactivating hydrotreatment catalysts: a review. Catalogue Index 15, 43-68. https://doi.org/10.1134/S2070050423010026.

[13]

Carbone, E., Sadeghi, N., Vos, E., Hübner, S., van Veldhuizen, E., van Dijk, J., Nijdam, S., Kroesen, G., 2014. Spatio-temporal dynamics of a pulsed microwave argon plasma: ignition and afterglow. Plasma Sources Sci. Technol. 24 (1). https://doi.org/10.1088/0963-0252/24/1/015015.

[14]

Chen, G.X., Silva, T., Georgieva, V., Godfroid, T., Britun, N., Snyders, R., Delplancke- Ogletree, M.P., 2015. Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. Int. J. Hydrogen Energy 40 (9), 3789-3796. https://doi.org/10.1016/j.ijhydene.2015.01.084.

[15]

Chen, G., Georgieva, V., Godfroid, T., Snyders, R., Delplancke-Ogletree, M.-P., 2016. Plasma assisted catalytic decomposition of CO2. Appl. Catal. B Environ. 190, 115-124. https://doi.org/10.1016/j.apcatb.2016.03.009.

[16]

Chen, G., Godfroid, T., Britun, N., Georgieva, V., Delplancke-Ogletree, M.-P., Snyders, R., 2017 a. Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Appl. Catal. B Environ. 214, 114-125. https://doi.org/10.1016/j.apcatb.2017.05.032.

[17]

Chen, G., Britun, N., Godfroid, T., Georgieva, V., Snyders, R., Delplancke-Ogletree, M.-P., 2017 b. An overview of CO2 conversion in a microwave discharge: the role of plasmacatalysis. J. Phys. Appl. Phys. 50 (8). https://doi.org/10.1088/1361-6463/aa5616.

[18]

Chen, G., Snyders, R., Britun, N., 2021. CO2 conversion using catalyst-free and catalystassisted plasma-processes: recent progress and understanding. J. CO2 Util. 49. https://doi.org/10.1016/j.jcou.2021.101557.

[19]

Chen, H.L., Lee, H.M., Chen, S.H., Chao, Y., Chang, M.B., 2008. Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects. Appl. Catal. B Environ. 85 (1-2), 1-9. https://doi.org/10.1016/j.apcatb.2008.06.021.

[20]

Chun, S.M., Hong, Y.C., Choi, D.H., 2017. Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure. J. CO2 Util. 19, 221-229. https://doi.org/10.1016/j.jcou.2017.03.016.

[21]

Chun, S.M., Shin, D.H., Ma, S.H., Yang, G.W., Hong, Y.C., 2019. CO2 microwave plasmacatalytic reactor for efficient reforming of methane to syngas. Catalysts 9 (3). https://doi.org/10.3390/catal9030292.

[22]

Cifarelli, L., Goede, A.P.H., Wagner, F., 2018. CO2 neutral fuels. In: EPJ Web of Conferences, vol. 189. https://doi.org/10.1051/epjconf/201818900010.

[23]

Czylkowski, D., Hrycak, B., Jasinski, M., Dors, M., Mizeraczyk, J., 2016. Microwave plasma-based method of hydrogen production via combined steam reforming of methane. Energy 113, 653-661. https://doi.org/10.1016/j.energy.2016.07.088.

[24]

de la Fuente, J.F., Moreno, S.H., Stankiewicz, A.I., Stefanidis, G.D., 2016. Reduction of CO2 with hydrogen in a non-equilibrium microwave plasma reactor. Int. J. Hydrogen Energy 41 (46), 21067-21077. https://doi.org/10.1016/j.ijhydene.2016.08.032.

[25]

de la Fuente, J.F., Kiss, A.A., Radoiu, M.T., Stefanidis, G.D., 2017. Microwave plasma emerging technologies for chemical processes. J. Chem. Technol. Biotechnol. 92 (10), 2495-2505. https://doi.org/10.1002/jctb.5205.

[26]

D'Isa, F.A., Carbone, E. A.D., Hecimovic, A., Fantz, U., 2020. Performance analysis of a 2.45 GHz microwave plasma torch for CO(2) decomposition in gas swirl configuration. Plasma Sources Sci. Technol. 29 (10). https://doi.org/10.1088/1361-6595/abaa84.

[27]

Eliasson, B., Kogelschatz, U., 1991. Nonequilibrium volume plasma chemical-processing. IEEE Trans. Plasma Sci. 19 (6), 1063-1077. https://doi.org/10.1109/27.125031.

[28]

Fleisch, T., Kabouzi, Y., Moisan, M., Pollak, J., Castanos-Martinez, E., Nowakowska, H., Zakrzewski, Z., 2007. Designing an efficient microwave-plasma source, independent of operating conditions, at atmospheric pressure. Plasma Sources Sci. Technol. 16 (1), 173-182. https://doi.org/10.1088/0963-0252/16/1/022.

[29]

Fridman, A., 2008. Plasma Chemistry. Cambridge University Press.

[30]

Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Gregor, L., Hauck, J., Le Quéré C., Luijkx, I.T., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R., Alkama, R., Arneth, A., Arora, V.K., Bates, N.R., Becker, M., Bellouin, N., Bittig, H.C., Bopp, L., Chevallier, F., Chini, L.P., Cronin, M., Evans, W., Falk, S., Feely, R.A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T., Jain, A.K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J.I., Landschützer, P., Lefévre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M.J., Metzl, N., Monacci, N.M., Munro, D.R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P.I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T.M., Schwinger, J., Séférian, R., Shutler, J.D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A.J., Sweeney, C., Takao, S., Tanhua, T., Tans, P.P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G.R., Walker, A.P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., 2022. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811-4900. https://doi.org/10.5194/essd-14-4811-2022.

[31]

García, M.C., Mora, M., Esquivel, D., Foster, J.E., Rodero, A., Jiménez-Sanchidrián, C., Romero-Salguero, F.J., 2017. Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye. Chemosphere 180, 239-246. https://doi.org/10.1016/j.chemosphere.2017.03.126.

[32]

George, A., Shen, B., Craven, M., Wang, Y., Kang, D., Wu, C., Tu, X., 2021. A Review of Non- Thermal Plasma Technology: a novel solution for CO2 conversion and utilization. Renewable Sustainable Energy Rev. 135. https://doi.org/10.1016/j.rser.2020.109702.

[33]

Grice, K.A., Kubiak, C.P., 2014. Recent studies of rhenium and manganese bipyridine carbonyl catalysts for the electrochemical reduction of CO2. CO 2 Chemistry 66, 163-188. https://doi.org/10.1016/B978-0-12-420221-4.00005-6.

[34]

Hecimovic, A., D'Isa, F.A., Carbone, E., Fantz, U., 2022. Enhancement of CO2 conversion in microwave plasmas using a nozzle in the effluent. J. CO2 Util. 57. https://doi.org/10.1016/j.jcou.2021.101870.

[35]

Hecimovic, A., Kiefer, C.K., Meindl, A., Antunes, R., Fantz, U., 2023. Fast gas quenching of microwave plasma effluent for enhanced CO 2 conversion. J. CO2 Util. 71. https://doi.org/10.1016/j.jcou.2023.102473.

[36]

Hou, Z.Y., Chen, P., Fang, H.L., Zheng, X.M., Yashima, T., 2006. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh- ) promoted Ni catalysts. Int. J. Hydrogen Energy 31 (5), 555-561. https://doi.org/10.1016/j.ijhydene.2005.06.010.

[37]

Hrycak, B., Czylkowski, D., Jasinski, M., Dors, M., Mizeraczyk, J., 2019. Hydrogen production via synthetic biogas reforming in atmospheric-pressure microwave (915MHz) plasma at high gas-flow output. Plasma Chem. Plasma Process. 39 (3), 695-711. https://doi.org/10.1007/s11090-019-09962-z.

[38]

Janeco, A., Pinhao, N.R., Guerra, V., 2015. Electron kinetics in He/CH4/CO2 mixtures used for methane conversion. J. Phys. Chem. C 119 (1), 109-120. https://doi.org/10.1021/jp509843e.

[39]

Jasinski, M., Czylkowski, D., Hrycak, B., Dors, M., Mizeraczyk, J., 2013. Atmospheric pressure microwave plasma source for hydrogen production. Int. J. Hydrogen Energy 38 (26), 11473-11483. https://doi.org/10.1016/j.ijhydene.2013.05.105.

[40]

Ken, P.W., S. O, Willerton, Kevin, L., 2010. Plasma gasification: lessons learned at ecovalley WTE facility. In:Proceedings of the 18th Annual North American Waste-To- Energy Conference.

[41]

Kim, H., Song, S., Tom, C.P., Xie, F., 2020. Carbon dioxide conversion in an atmospheric pressure microwave plasma reactor: improving efficiencies by enhancing afterglow quenching. J. CO2 Util. 37, 240-247. https://doi.org/10.1016/j.jcou.2019.12.011.

[42]

Kozak, T., Bogaerts, A., 2014. Splitting of CO2 by vibrational excitation in nonequilibrium plasmas: a reaction kinetics model. Plasma Sources Sci. Technol. 23 (4). https://doi.org/10.1088/0963-0252/23/4/045004.

[43]

Kozak, T., Bogaerts, A., 2015. Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model. Plasma Sources Sci. Technol. 24 (1). https://doi.org/10.1088/0963-0252/24/1/015024.

[44]

Kwak, H.S., Uhm, H.S., Hong, Y.C., Choi, E.H., 2015. Disintegration of carbon dioxide molecules in a microwave plasma torch. Sci. Rep. 5. https://doi.org/10.1038/srep18436.

[45]

Leins, M., Kopecki, J., Gaiser, S., Schulz, A., Walker, M., Schumacher, U., Stroth, U., Hirth, T., 2014. Microwave plasmas at atmospheric pressure. Contrib. Plasma Phys. 54 (1), 14-26. https://doi.org/10.1002/ctpp.201300033.

[46]

Li, T.-m., Li, J.-y., Yu, X.-y., Zhang, T.-w., Wang, H.-y., Li, H., Zhou, Y.-h., Zhou, H., 2006. Analysis of factors affecting relativistic magnetron's efficiency. Acta Electron. Sin. 34 (9), 1721-1725.

[47]

Liu, C.J., Xu, G.H., Wang, T.M., 1999. Non-thermal plasma approaches in CO2 utilization. Fuel Process. Technol. 58 (2-3), 119-134. https://doi.org/10.1016/s0378-3820(98)00091-5.

[48]

Mansfeld, D., Sintsov, S., Chekmarev, N., Vodopyanov, A., 2020. Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure. J. CO2 Util. 40. https://doi.org/10.1016/j.jcou.2020.101197.

[49]

Mohsenian, S., Nagassou, D., Elahi, R., Yu, P., Nallar, M., Wong, H.-W., Trelles, J.P., 2019. Carbon dioxide conversion by solar-enhanced microwave plasma: effect of specific power and argon/nitrogen carrier gases. J. CO2 Util. 34, 725-732. https://doi.org/10.1016/j.jcou.2019.09.002.

[50]

Moisan, M., Zakrzewskit, Z., Pantel, R., 1979. The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns. J. Phys. Appl. Phys. 12. https://doi.org/10.1088/0022-3727/12/2/008.

[51]

Moisan, M., Zakrzewski, Z., Pantel, R., Leprince, P., 1984. A waveguide-based launcher to sustain long plasma columns through the propagation of an electronmagnetic surface wave. IEEE Trans. Plasma Sci. 12 (3), 203-214. https://doi.org/10.1109/TPS.1984.4316320.

[52]

Ong, M.Y., Nomanbhay, S., Kusumo, F., Show, P.L., 2022. Application of microwave plasma technology to convert carbon dioxide (CO2) into high value products: a review. J. Clean. Prod. 336. https://doi.org/10.1016/j.jclepro.2022.130447.

[53]

Pakhare, D., Spivey, J., 2014. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43 (22), 7813-7837. https://doi.org/10.1039/c3cs60395.

[54]

Pietanza, L.D., Guaitella, O., Aquilanti, V., Armenise, I., Bogaerts, A., Capitelli, M., Colonna, G., Guerra, V., Engeln, R., Kustova, E., Lombardi, A., Palazzetti, F., Silva, T., 2021. Advances in non-equilibrium CO2 plasma kinetics: a theoretical and experimental review. The European Physical Journal D 75 (9). https://doi.org/10.1140/epjd/s10053-021-00226-0.

[55]

Qin, Y., Niu, G., Wang, X., Luo, D., Duan, Y., 2018. Status of CO2 conversion using microwave plasma. J. CO2 Util. 28, 283-291. https://doi.org/10.1016/j.jcou.2018.10.003.

[56]

Qin, Y., Niu, G., Wang, X., Luo, D., Duan, Y., 2020. Conversion of CO2 in a low-powered atmospheric microwave plasma: in-depth study on the trade-off between CO2 conversion and energy efficiency. Chem. Phys. 538. https://doi.org/10.1016/j.chemphys.2020.110913.

[57]

Rusanov, V.D., Fridman, A.A., Sholin, G.V., 1981. The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules. Sov. Phys. Usp. 24 (6), 447-474. https://doi.org/10.1070/PU1981v024n06ABEH004884.

[58]

Russo, P., Primiani, V.M., Cerri, G., De Leo, R., Vecchioni, E., 2011. Experimental characterization of a surfaguide fed plasma antenna. IEEE Trans. Antenn. Propag. 59 (2), 425-433. https://doi.org/10.1109/tap.2010.2096387.

[59]

Schulz, A., Buechele, P., Ramisch, E., Janzen, O., Jimenez, F., Kamm, C., Kopecki, J., Leins, M., Merli, S., Petto, H., Mendez, F.R., Schneider, J., Schumacher, U., Walker, M., Stroth, U., 2012. Scalable microwave plasma sources from low to atmospheric pressure. Contrib. Plasma Phys. 52 (7), 607-614. https://doi.org/10.1002/ctpp.201210057.

[60]

Silva, T., Britun, N., Godfroid, T., Snyders, R., 2014. Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Sci. Technol. 23 (2). https://doi.org/10.1088/0963-0252/23/2/025009.

[61]

Silva, T., Britun, N., Godfroid, T., Snyders, R., 2016. Understanding CO2 decomposition in microwave plasma by means of optical diagnostics. Plasma Process. Polym. 14 (6). https://doi.org/10.1002/ppap.201600103.

[62]

Sintsov, S., Vodopyanov, A., Mansfeld, D., 2019. Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron. AIP Adv. 9 (10). https://doi.org/10.1063/1.5115326.

[63]

Sintsov, S., Tabata, K., Mansfeld, D., Vodopyanov, A., Komurasaki, K., 2020. Optical emission spectroscopy of non-equilibrium microwave plasma torch sustained by focused radiation of gyrotron at 24 GHz. J. Phys. Appl. Phys. 53 (30). https://doi.org/10.1088/1361-6463/ab8999.

[64]

Snoeckx, R., Bogaerts, A., 2017. Plasma technology - a novel solution for CO2 conversion? Chem. Soc. Rev. 46 (19), 5805-5863. https://doi.org/10.1039/c6cs00066e.

[65]

Spencer, L.F., Gallimore, A.D., 2013. CO2 dissociation in an atmospheric pressure plasma/catalyst system: a study of efficiency. Plasma Sources Sci. Technol. 22 (1). https://doi.org/10.1088/0963-0252/22/1/015019.

[66]

Sun, H., Lee, J., Bak, M.S., 2021. Experiments and modeling of atmospheric pressure microwave plasma reforming of a methane-carbon dioxide mixture. J. CO2 Util. 46. https://doi.org/10.1016/j.jcou.2021.101464.

[67]

Taghian Dinani, S., Kubbutat, P., Kulozik, U., 2020. Assessment of heating profiles in model food systems heated by different microwave generators: solid-state (semiconductor) versus traditional magnetron technology. Innovat. Food Sci. Emerg. Technol. 63. https://doi.org/10.1016/j.ifset.2020.102376.

[68]

Uhm, H.S., Kwak, H.S., Hong, Y.C., 2016. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch. Environ. Pollut. 211, 191-197. https://doi.org/10.1016/j.envpol.2015.12.053.

[69]

Van Alphen, S., Hecimovic, A., Kiefer, C.K., Fantz, U., Snyders, R., Bogaerts, A., 2023. Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas. Chem. Eng. J. 462. https://doi.org/10.1016/j.cej.2023.142217.

[70]

Vecten, S., Wilkinson, M., Martin, A., Dexter, A., Bimbo, N., Dawson, R., Herbert, B., 2020. Experimental study of steam and carbon dioxide microwave plasma for advanced thermal treatment application. Energy 207. https://doi.org/10.1016/j.energy.2020.118086.

[71]

Vermeiren, V., Bogaerts, A., 2020. Plasma-based CO2 conversion: to quench or not to quench? J. Phys. Chem. C 124 (34), 18401-18415. https://doi.org/10.1021/acs.jpcc.0c04257.

[72]

Vesel, A., Mozetic, M., Drenik, A., Balat-Pichelin, M., 2011. Dissociation of CO2 molecules in microwave plasma. Chem. Phys. 382 (1-3), 127-131. https://doi.org/10.1016/j.chemphys.2011.03.015.

[73]

Wang, Q.Y., Wang, J.Q., Zhu, T.H., Zhu, X.M., Sun, B., 2021. Characteristics of methane wet reforming driven by microwave plasma in liquid phase for hydrogen production. Int. J. Hydrogen Energy 46 (69), 34105-34115. https://doi.org/10.1016/j.ijhydene.2021.08.006.

[74]

Wang, Q.Y., Zhu, T.H., Li, Z., Zhu, X.M., Liu, J.L., Sun, B., 2022a. Plasma activation of methane for hydrogen in microwave liquid discharge by auxiliary gases: a way to realize efficient utilization of resources. Fuel 330. https://doi.org/10.1016/j.fuel.2022.125673.

[75]

Wang, Q.Y., Zhu, X.M., Sun, B., Li, Z., Liu, J.L., 2022b. Hydrogen production from methane via liquid phase microwave plasma: a deoxidation strategy. Appl. Energy 328. https://doi.org/10.1016/j.apenergy.2022.120200.

[76]

Wolf, A.J., Peeters, F.J.J., Groen, P.W.C., Bongers, W.A., van de Sanden, M.C.M., 2020. CO2 conversion in nonuniform discharges: disentangling dissociation and recombination mechanisms. J. Phys. Chem. C 124 (31), 16806-16819. https://doi.org/10.1021/acs.jpcc.0c03637.

[77]

Zamri, A.A., Ong, M.Y., Nomanbhay, S., Show, P.L., 2021. Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: a review. Environ. Res. 197. https://doi.org/10.1016/j.envres.2021.111204.

[78]

Zhang, W.C., Wu, L., Liu, Z., Tao, J.W., Huang, K.M., 2020. Experimental investigation on improving the efficiency of power coupling from the incident microwave to the discharge in a plasma torch. Phys. Plasmas 27 (3). https://doi.org/10.1063/1.5126394.

[79]

Zhang, W., Wu, L., Tao, J., Zhu, H., 2023. Three-dimensional modeling of microwave discharges in a waveguide-based plasma source with experimental comparison. Phys. Rev. 108 (6). https://doi.org/10.1103/PhysRevE.108.065209.

[80]

Zhang, W., Wu, L., Tao, J., Huang, K., 2019a. Numerical investigation of the gas flow effects on surface wave propagation and discharge properties in a microwave plasma torch. IEEE Trans. Plasma Sci. 47 (1), 271-277. https://doi.org/10.1109/tps.2018.2882637.

[81]

Zhang, W., Wu, L., Huang, K., Tao, J., 2019b. Propagating modes of the travelling wave in a microwave plasma torch with metallic enclosure. Phys. Plasmas 26 (4). https://doi.org/10.1063/1.5086088.

[82]

Zhong, N., Zhu, H., Yang, F., Hong, T., Yang, Y., Huang, K., 2021. A new structure of microwave-driven UV lamp. Int. J. RF Microw. Computer-Aided Eng. 31 (3). https://doi.org/10.1002/mmce.22447.

[83]

Zhu, T.H., Sun, B., Zhu, X.M., Wang, L.R., Xin, Y.B., Liu, J.L., 2021. Mechanism analysis of hydrogen production by microwave discharge in ethanol liquid. J. Anal. Appl. Pyrol. 156. https://doi.org/10.1016/j.jaap.2021.105111.

[84]

Zhu, T.H., Liu, J.L., Wang, Q.Y., Zhu, X.M., Sun, B., 2023. Enhanced hydrogen production by microwave liquid-phase discharge plasma reforming of methanol solution without catalyst. J. Energy Inst. 108. https://doi.org/10.1016/j.joei.2023.101246.

AI Summary AI Mindmap
PDF (2500KB)

227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/