Effect of nickel doping on magnetic and dielectric properties of orthorhombic calcium ferrite nanoparticles

R. UmashankaraRaja , Y.S. Vidya , H.C. Manjunatha , M. Priyanka , R. Munirathnam , K.M. Rajashekara , S. Manjunatha , E. Krishnakanth

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100059

PDF (3249KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100059 DOI: 10.1016/j.gerr.2024.100059
Research Articles
research-article

Effect of nickel doping on magnetic and dielectric properties of orthorhombic calcium ferrite nanoparticles

Author information +
History +
PDF (3249KB)

Abstract

Nickel (10∼50 mol%) doped calcium ferrite nanoparticles (NPs) are synthesized by the solution combustion method using lemon juice extract as a reducing agent, followed by calcination at 500°C. The calcined samples are characterized with different techniques. The Bragg reflections of Nickel doping confirm the formation of a single orthorhombic calcium ferrite phase. The crystallite size is estimated using both Scherrer's and the W-H plot method. The surface morphology consists of irregular size and shaped agglomerated NPs along with pores and voids. A blueshift and a broad absorption spectrum is observed with an increase in the direct energy band gap. The direct energy band gap estimated from Wood and Tauc's relationship was found to be 2.91∼2.97 eV with an increase in dopant concentration. The magnetic analysis provided values for saturation magnetization (Ms), remanence (Mr), and coercivity (Hc), while dielectric studies demonstrated a dielectric constant of 2.81, 2.14, and 1.67 with increasing dopant concentration. The variation of dielectric properties of the sample as a function of frequency in the range 0.1∼20 MHz has been studied at room temperature. The dielectric properties of CaFe2O4: Ni (1∼9 mol%) NPs clearly indicate that there is a more pronounced dispersion at lower frequencies, gradually reaching saturation as the frequency increases. The dielectric loss was found to decrease from 4.62, 3.22, and 2.32 with an increase in Ni2+ substitution (10, 30, and 50 mol%) respectively. These results indicate the suitability of these samples for applications in memory devices and high-frequency applications.

Keywords

Calcium ferrite / Nickel / Green technology / Electrical / Magnetic / Orthorhombic

Cite this article

Download citation ▾
R. UmashankaraRaja, Y.S. Vidya, H.C. Manjunatha, M. Priyanka, R. Munirathnam, K.M. Rajashekara, S. Manjunatha, E. Krishnakanth. Effect of nickel doping on magnetic and dielectric properties of orthorhombic calcium ferrite nanoparticles. Green Energy and Resources, 2024, 2(1): 100059 DOI:10.1016/j.gerr.2024.100059

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

Ahmed, M., Hossain, M.D., Akter, S., Hossain, M.A., Sikder, S.S., Hakim, M.A., Khan, M.N.I., 2022. Structural and magnetic properties of Co0·85Zn0. 15YxFe2-xO4 ferrites. PhysicaB:CondensedMatter 645, 414267. https://doi.org/10.1016/j.physb.2022.414267.

[2]

Ajeesha, T.L., Manikandan, A., Anantharaman, A., Jansi, S., Durka, M., Almessiere, M.A., et al., 2022. Structural investigation of Cu doped calcium ferrite (Ca1-xCuxFe2O4; x=0, 0.2, 0.4, 0.6, 0.8, 1) nanomaterials prepared by co-precipitation method. J. Mater. Res. Technol. 18, 705-719. https://doi.org/10.1016/j.jmrt.2022.02.081.

[3]

Almessiere, M.A., Slimani, Y., Auwal, I.A., Shirsath, S.E., Gondal, M.A., Sertkol, M., Baykal, A., 2021. Biosynthesis effect of Moringa oleifera leaf extract on structural and magnetic properties of Zn doped Ca-Mg nano-spinel ferrites. Arab. J. Chem. 14 (8), 103261. https://doi.org/10.1016/j.arabjc.2021.103261.

[4]

Azzoni, C.B., Mozzati, M.C., Massarotti, V., Capsoni, D., Bini, M., 2007. New insights into the magnetic properties of the Ca2Fe2O5 ferrite. Solid State Sci. 9 (6), 515-520. https://doi.org/10.1016/j.solidstatesciences.2007.04.013.

[5]

Chand, P., Vaish, S., Kumar, P., 2017. Structural, optical and dielectric properties of transition metal (MFe2O4; M=Co, Ni and Zn) nanoferrites. Phys. B Condens. Matter 524, 53-63. https://doi.org/10.1016/j.physb.2017.08.060.

[6]

Debnath, A., Bera, A., Chattopadhyay, K.K., Saha, B., 2016. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles. AIP Conf. Proc. 1731 (No. 1). https://doi.org/10.1063/1.4947757. AIP Publishing.

[7]

Deng, J., Liu, Z., Qin, T., Chen, X., Li, K., Meng, L., et al., 2022. Development of Ni-doped Fe/Ca catalyst to be used for hydrogen-rich syngas production during medicine residue pyrolysis. Energy 254, 124205. https://doi.org/10.1016/j.energy.2022.124205.

[8]

Ghanbari, D., Salavati-Niasari, M., Beshkar, F., Amiri, O., 2015. Electro-spinning of cellulose acetate nanofibers: microwave synthesize of calcium ferrite nanoparticles and CA-Ag-CaFe2O4 nanocomposites. J. Mater. Sci. Mater. Electron. 26, 8358-8366. https://doi.org/10.1007/s10854-015-3502-5.

[9]

Gomes, H.C., Teixeira, S.S., Graça, M.P.F., 2022. Synthesis of calcium ferrite for energy storage applications. J. Alloys Compd. 921, 166026. https://doi.org/10.1016/j.jallcom.2022.166026.

[10]

Gordani, G.R., Estarki, M.R.L., Kiani, E., Torkian, S., 2022. The effects of strontium ferrite micro-and nanoparticles on the microstructure, phase, magnetic properties, and electromagnetic waves absorption of graphene oxide-SrFe12O19-SiC aerogel nanocomposite. J. Magn. Magn Mater. 545, 168667. https://doi.org/10.1016/j.jmmm.2021.168667.

[11]

Heidari, P., Masoudpanah, S.M., 2021. Structural, magnetic and optical properties and photocatalytic activity of magnesium-calcium ferrite powders. J. Phys. Chem. Solid. 148, 109681. https://doi.org/10.1016/j.jpcs.2020.109681.

[12]

Ismail, M.M., Jaber, N.A., 2018. Influences of cation distribution of zinc substituted on inverse spinel nickel ferrite nanoparticle for superparamagnetic approach. Surf. Rev. Lett. 25 (3), 1850076. https://doi.org/10.1142/S0218625X18500762.

[13]

Isupova, L.A., Tsybulya, S.V., Kryukova, G.N., Budneva, A.A., Paukshtis, E.A., Litvak, G.S., et al., 2002. Mechanochemical synthesis and catalytic properties of the calcium ferrite Ca2Fe2O5. Kinet. Catal. 43, 122-129. https://doi.org/10.1023/A:1014217716883.

[14]

Jani, P., Desai, H., Madhukar, B.S., Tanna, A., 2022. Investigations of calcium ferrite nanoparticles synthesized by sol-gel auto combustion and solution mixture methods. Mater. Res. Innovat. 26 (3), 189-195. https://doi.org/10.1080/14328917.2021.1932318.

[15]

Khanna, L., Verma, N.K., 2013. Size-dependent magnetic properties of calcium ferrite nanoparticles. J. Magn. Magn Mater. 336, 1-7. https://doi.org/10.1016/j.jmmm.2013.02.016.

[16]

Koops, C.G., 1951. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Physical review 83 (1), 121. https://doi.org/10.1103/PhysRev.83.121.

[17]

Kour, S., Jasrotia, R., Kumari, N., Singh, V.P., Singh, P., Kumar, R., 2022. A current review on synthesis and magnetic properties of pure and doped manganese ferrites. AIP Conf. Proc. 2357 (No. 1). https://doi.org/10.1063/5.0080692. AIP Publishing.

[18]

Liu, Y.C., Tu, L.K., Yen, T.H., Lee, G.H., Yang, S.T., Chiang, M.H., 2010. Secondary coordination sphere interactions within the biomimetic iron azadithiolate complexes related to Fe-only hydrogenase: dynamic measure of electron density about the Fe sites. Inorg. Chem. 49 (14), 6409-6420. https://doi.org/10.1021/ic100484a.

[19]

Muthuselvam, I.P., Bhowmik, R.N., 2010. Mechanical alloyed Ho3t doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn Mater. 322 (7), 767-776. https://doi.org/10.1016/j.jmmm.2009.10.057.

[20]

Nawaz, M., Almessiere, M.A., Almofty, S.A., Gungunes, C.D., Slimani, Y., Baykal, A., 2019. Exploration of catalytic and cytotoxicity activities of CaxMgxNi1-2xFe2O4 nanoparticles. J. Photochem. Photobiol. B Biol. 196, 111506. https://doi.org/10.1016/j.jphotobiol.2019.05.003.

[21]

Rana, G., Dhiman, P., Kumar, A., Vo, D.V.N., Sharma, G., Sharma, S., Naushad, M., 2021. Recent advances on nickel nano-ferrite: a review on processing techniques, properties and diverse applications. Chem. Eng. Res. Des. 175, 182-208. https://doi.org/10.1016/j.cherd.2021.08.040.

[22]

Reddy, B.C., Manjunatha, H.C., Vidya, Y.S., Sridhar, K.N., Pasha, U.M., Seenappa, L., et al., 2021. Synthesis and characterization of multi functional nickel ferrite nanoparticles for X-ray/gamma radiation shielding, display and antimicrobial applications. J. Phys. Chem. Solid. 159, 110260. https://doi.org/10.1016/j.jpcs.2021.110260.

[23]

Slimani, Y., Almessiere, M.A., Nawaz, M., Baykal, A., Akhtar, S., Ercan, I., Belenli, I., 2019. Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceram. Int. 45 (5), 6021-6029. https://doi.org/10.1016/j.ceramint.2018.12.072.

[24]

Tatarchuk, T., Danyliuk, N., Kotsyubynsky, V., Shumskaya, A., Kaniukov, E., Ghfar, A.A., et al., 2022. Eco-friendly synthesis of cobalt-zinc ferrites using quince extract for adsorption and catalytic applications: an approach towards environmental remediation. Chemosphere 294, 133565. https://doi.org/10.1016/j.chemosphere.2022.133565.

[25]

Tolani, S.C., Golhar, A.R., Rewatkar, K.G., 2019. A review of morphological, structural behaviour and technological applications of ferrites. AIP Conf. Proc. 2104 (No. 1). https://doi.org/10.1063/1.5100459.

[26]

AIP, Publishing. Uddin, M.J., Jeong, Y.K., 2022. Application of magnesium ferrite nanomaterials for adsorptive removal of arsenic from water: effects of Mg and Fe ratio. Chemosphere 307, 135817. https://doi.org/10.1016/j.chemosphere.2022.135817.

[27]

Vigneswari, T., Raji, P., 2017. Structural and magnetic properties of calcium doped nickel ferrite nanoparticles by co-precipitation method. J. Mol. Struct. 1127, 515-521. https://doi.org/10.1016/j.molstruc.2016.07.116.

[28]

Wang, G., Zhao, D., Ma, Y., Zhang, Z., Che, H., Mu, J., et al., 2017. Synthesis of calcium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability. Powder Technol. 322, 47-53. https://doi.org/10.1016/j.powtec.2017.08.065.

[29]

Wang, Y., Yao, L., Zheng, Q., Cao, M.S., 2022. Graphene-wrapped multiloculated nickel ferrite: a highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 15 (7), 6751-6760. https://doi.org/10.1007/s12274-022-4428-x.

[30]

Wei, X., Liu, Y., Zhao, D., Mao, X., Jiang, W., Ge, S.S., 2020. Net-shaped barium and strontium ferrites by 3D printing with enhanced magnetic performance from milled powders. J. Magn. Magn Mater. 493, 165664. https://doi.org/10.1016/j.jmmm.2019.165664.

[31]

Xie, D., Chu, S., Zhang, S., Ivanets, A., Zhang, L., Su, X., 2022. Facile synthesis of Cr-doped ferrite catalyst from Cr-containing electroplating sludge with activated persulfate for efficient degradation of tetracycline. J. Environ. Chem. Eng. 10 (6), 108805. https://doi.org/10.1016/j.jece.2022.108805.

[32]

Yang, D., Wang, W., Li, J., Xu, R., Wang, X., Wang, G., 2020. Effect and mechanism of alumina on the morphology and mechanical properties of calcium ferrite. Metall. Mater. Trans. B 51, 776-785. https://doi.org/10.1007/s11663-020-01783-2.

AI Summary AI Mindmap
PDF (3249KB)

308

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/