High performance all-solid-state Li-Se battery based on selenium loaded on Ti3C2 MXene cathode

Renbo Liu , Chongxing Li , Qingyu Li , Shuxian Zhang , Chengxiang Wang , Zhiwei Zhang , Yuanchang Shi , Lidong Yang , Longwei Yin , Rutao Wang

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100058

PDF (2519KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100058 DOI: 10.1016/j.gerr.2024.100058
Research Articles
research-article

High performance all-solid-state Li-Se battery based on selenium loaded on Ti3C2 MXene cathode

Author information +
History +
PDF (2519KB)

Abstract

Selenium has high theoretical volumetric capacity of 3253 mAh cm−3 and acceptable electronic conductivity of 1 × 10−5 S m−1, which is considered as a potential alternative to sulfur cathode for all-solid-state rechargeable batteries with high energy density. However, the development of all-solid-state Li-Se batteries (ASSLSBs) are hindered by sluggish kinetics and poor cycling life. In this work, trigonal Se nanocrystallines are homogenously distributed in the interspace and on the surface of MXene layers (denoted as Se@MXene composite) by a novel melt-diffusion method. ASSLSBs based on this Se@MXene composite cathode exhibit large specific capacity of 632 mAh g−1 at 0.05 A g−1, high-rate capability over 4 A g−1, and excellent cycling stability over 300 cycles at 1 A g−1. The ex-situ analytical techniques demonstrate that the excellent electrochemical performance of Se@MXene cathode largely arises from structural stability with the assistance of conductive MXene and reversible redox behavior between Li2Se and Se during the repeating charge/discharge process. Our study points out the potential of material design of Se cathode based on conducting 2D materials with good electrochemical behavior, which may accelerate the practicability of ASSLSBs.

Keywords

Li-Se batteries / Solid-state electrolyte / Lithium argyrodite / MXene / Composite

Cite this article

Download citation ▾
Renbo Liu, Chongxing Li, Qingyu Li, Shuxian Zhang, Chengxiang Wang, Zhiwei Zhang, Yuanchang Shi, Lidong Yang, Longwei Yin, Rutao Wang. High performance all-solid-state Li-Se battery based on selenium loaded on Ti3C2 MXene cathode. Green Energy and Resources, 2024, 2(1): 100058 DOI:10.1016/j.gerr.2024.100058

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52272224, 51902188), Innovation Capacity Improvement Project of Small and Medium-Sized Technology-Based Enterprise of Shandong Province (2021TSGC1149), and Youth Innovation Team Project of Shandong Provincial Education Department (10000082295015).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gerr.2024.100058.

References

[1]

Abouimrane, A., Dambournet, D., Chapman, K.W., et al., 2012. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505-4508. https://doi.org/10.1021/ja211766q.

[2]

Cao, Z.J., Zhang, Y.Z., Cui, Y.L.S., et al., 2020. Harnessing the unique features of MXenes for sulfur cathodes. Tungsten-Singapore 2, 162-175. https://doi.org/10.1007/s42864-020-00047-5.

[3]

Dong, Y.F., Lu, P.F., Ding, Y.J., et al., 2021. Advanced design of cathodes and interlayers for high-performance lithium-selenium batteries. SusMat 1, 393-412. https://doi.org/10.1002/sus2.26.

[4]

Eftekhari, A., 2017. The rise of lithium-selenium batteries. Sustain. Energy Fuels 1, 14-29. https://doi.org/10.1039/c6se00094k.

[5]

Guo, B.Y., Wang, Z.F., Chen, J.Z., et al., 2022. Cryo-em revealing the origin of excessive capacity of the Se cathode in sulfide-based all-solid-state Li-Se batteries. ACS Nano 16, 17414-17423. https://doi.org/10.1021/acsnano.2c08558.

[6]

Li, X.N., Liang, J.W., Li, X., et al., 2018. High-performance all-solid-state Li-Se batteries induced by sulfide electrolytes. Energy Environ. Sci. 11, 2828-2832. https://doi.org/10.1039/c8ee01621f.

[7]

Li, X.N., Liang, J.W., Kim, J.T., et al., 2022. Highly stable halide-electrolyte-based allsolid- state Li-Se batteries. Adv. Mater. 34 8. https://doi.org/10.1002/adma.202200856.

[8]

Li, C.X., Liu, R.B., Zhang, S.X., et al., 2023. Advanced all-solid-state lithium-selenium batteries enabled by selenium-nitrogen doped hierarchic meso-microporous carbon nanospheres composite cathode. Chin. Chem. Lett. 34, 5. https://doi.org/10.1016/j.cclet.2022.108083.

[9]

Li, Q., Chen, J., Zhang, S., et al., 2024. The developments, challenges, and prospects of solid-state Li-Se batteries. Energy Storage Mater. 65. https://doi.org/10.1016/j.ensm.2023.103138.

[10]

Lin, J.Y., Chen, S., Li, J.Y., et al., 2022. Chlorine-rich lithium argyrodites enables superior performances for solid-state Li-Se batteries at wide temperature range. Rare Met. 41, 4065-4074. https://doi.org/10.1007/s12598-022-02093-z.

[11]

Liu, Y., Shen, Y.T., Sun, L.T., et al., 2016. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 7 9. https://doi.org/10.1038/ncomms10921.

[12]

Luo, J.M., Zhang, W.K., Yuan, H.D., et al., 2017. Pillared structure design of mxene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11, 2459-2469. https://doi.org/10.1021/acsnano.6b07668.

[13]

Luo, J., Qiu, S., Wang, H., et al., 2023. Rationally designed tungsten trioxide nanosheets for high-efficiency aqueous battery application. Green Energy Res. 1, 100008. https://doi.org/10.1016/j.gerr.2023.100008.

[14]

Mamoor, M., Li, Y., Wang, L., et al., 2023. Recent progress on advanced high energy electrode materials for sodium ion batteries. Green Energy Res. 1, 100033. https://doi.org/10.1016/j.gerr.2023.100033.

[15]

Oh, J., Choi, S.H., Kim, J.Y., et al., 2023. Anode-less all-solid-state batteries operating at room temperature and low pressure. Adv. Energy Mater. 9. https://doi.org/10.1002/aenm.202301508.

[16]

Park, H., Kim, J., Lee, D., et al., 2021. Epitaxial growth of nanostructured Li2Se on lithium metal for all solid-state batteries. Adv. Sci. 8 7. https://doi.org/10.1002/advs.202004204.

[17]

Piao, Z.H., Gao, R.H., Liu, Y.Q., et al., 2023. A review on regulating Lit solvation structures in carbonate electrolytes for lithium metal batteries. Adv. Mater. 35 22. https://doi.org/10.1002/adma.202206009.

[18]

Sarycheva, A., Gogotsi, Y., 2020. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480-3488. https://doi.org/10.1021/acs.chemmater.0c00359.

[19]

Schwietert, T.K., Arszelewska, V.A., Wang, C., et al., 2020. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428. https://doi.org/10.1038/s41563-019-0576-0.

[20]

Shi, X.M., Zeng, Z.C., Zhang, H.T., et al., 2023. Encapsulating and operating a stable Li3ErBr6-based solid Li-SeS2 battery at room temperature. Adv. Funct. Mater. 33 7. https://doi.org/10.1002/adfm.202213638.

[21]

Wang, W., 2023. Green energy and resources: advancing green and low-carbon development. Green Energy Res. 1, 10009. https://doi.org/10.1016/j.gerr.2023.100009.

[22]

Xiao, Z.B., Li, Z.L., Meng, X.P., et al., 2019. MXene-engineered lithium-sulfur batteries. J. Mater. Chem. A 7, 22730-22743. https://doi.org/10.1039/c9ta08600e.

[23]

Xu, G.-L., Sun, H., Luo, C., et al., 2019. Solid-state lithium/selenium-sulfur chemistry enabled via a robust solid-electrolyte interphase. Adv. Energy Mater. 9, 1802235. https://doi.org/10.1002/aenm.201802235.

[24]

Yang, C.P., Xin, S., Yin, Y.X., et al., 2013. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew. Chem.-Int. Edit. 52, 8363-8367. https://doi.org/10.1002/anie.201303147.

[25]

Yang, K., Fan, Q., Song, C., et al., 2023. Enhanced functional properties of porous carbon materials as high-performance electrode materials for supercapacitors. Green Energy Res. 1, 100030. https://doi.org/10.1016/j.gerr.2023.100030.

[26]

Zhang, J.Z., Kong, N., Hegh, D., et al., 2020. Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Appl. Mater. Interfaces 12, 34032-34040. https://doi.org/10.1021/acsami.0c06728.

[27]

Zhang, Q., Cai, L.T., Liu, G.Z., et al., 2020a. Selenium-infused ordered mesoporous carbon for room-temperature all-solid-state lithium-selenium batteries with ultrastable cyclability. ACS Appl. Mater. Interfaces 12, 16541-16547. https://doi.org/10.1021/acsami.0c01996.

[28]

Zhang, S., Chen, J., Zhu, C., et al., 2023. Robust all-solid-state lithium metal batteries enabled by a composite lithium anode with improved bulk Li diffusion kinetics properties. ACS Nano 17, 24290-24298. https://doi.org/10.1021/acsnano.3c09853.

[29]

Zhou, Y.C., Li, Z.J., Lu, Y.C., 2017. A stable lithium-selenium interface via solid/liquid hybrid electrolytes: blocking polyselenides and suppressing lithium dendrite. Nano Energy 39, 554-561. https://doi.org/10.1016/j.nanoen.2017.07.038.

AI Summary AI Mindmap
PDF (2519KB)

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/