Optimization bio-oil production from Chlorella sp. through microwave-assisted pyrolysis using response surface methodology

Mahfud Mahfud , Lailatul Qadariyah , Haqqyana Haqqyana , Viqhi Aswie

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100057

PDF (1596KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (1) : 100057 DOI: 10.1016/j.gerr.2024.100057
Short Communication
research-article

Optimization bio-oil production from Chlorella sp. through microwave-assisted pyrolysis using response surface methodology

Author information +
History +
PDF (1596KB)

Abstract

Optimization can streamline experimental trials by evaluating the parameters and parameter interactions used as the basis for a more optimal downstream process. This study aims to optimize the microwave-assisted pyrolysis process in producing bio-oil from microalgae using response surface methodology (RSM) complemented by an investigation of the reaction mechanisms. A number of key parameters (microwave power, absorbent-to-microalgae ratio, and pyrolysis time) were fine-tuned using a face-centered central composite design. The result showed that microwave technology in slow pyrolysis could produce the bio-oil from microalgae 12 times shorter than conventional heating and quadratic model with a high precision (R2 = 0.9832, R2adj = 0.9616) from RSM optimization in predicting experimental values yielded a peak bio-oil yield of 19.11% under specific conditions: 20 min of pyrolysis time, a 0.19 (w/w) microwave absorber to microalgae ratio, and 583 W power. As the complex biomass, the reaction mechanism in chlorella sp. towards this technology including decarboxylation, decarbonylation, dehydration, cracking, deoxygenation, and esterification was proved in GCMS analysis, revealing the presence of key functional groups such as aliphatic, aromatics, alcohols, nitrogenous compounds, fatty acid methyl esters (FAME) and Polycyclic Aromatics Hydrocarbons (PAHs).

Keywords

Bio-oil / Liquid fuel / Chlorella sp. / Microwave-assisted pyrolysis / Optimization

Cite this article

Download citation ▾
Mahfud Mahfud, Lailatul Qadariyah, Haqqyana Haqqyana, Viqhi Aswie. Optimization bio-oil production from Chlorella sp. through microwave-assisted pyrolysis using response surface methodology. Green Energy and Resources, 2024, 2(1): 100057 DOI:10.1016/j.gerr.2024.100057

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

Abdullah, N., Mohd Taib, R., Mohamad Aziz, N.S., Omar, M.R., Md Disa, N., 2023. Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon 9, e12940. https://doi.org/10.1016/j.heliyon.2023.e12940.

[2]

Adnan, M.A., Xiong, Q., Muraza, O., Hossain, M.M., 2020. Gasification of wet microalgae to produce H2-rich syngas and electricity: a thermodynamic study considering exergy analysis. Renew. Energy 147, 2195-2205. https://doi.org/10.1016/j.renene.2019.10.027.

[3]

Aladin, A., Modding, B., Syarif, T., Dewi, F.C., 2021. Effect of nitrogen gas flowing continuously into the pyrolysis reactor for simultaneous production of charcoal and liquid smoke. In: Journal of Physics: Conference Series. IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1763/1/012020.

[4]

Aladin, A., Yani, S., Modding, B., Wiyani, L., 2018. Pyrolisis of corncob waste to produce liquid smoke. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/175/1/012020.

[5]

Antunes, E., Jacob, M.V., Brodie, G., Schneider, P.A., 2018. Microwave pyrolysis of sewage biosolids: dielectric properties, microwave susceptor role and its impact on biochar properties. J. Anal. Appl. Pyrolysis 129, 93-100. https://doi.org/10.1016/j.jaap.2017.11.023.

[6]

Aswie, V., Qadariyah, L., Mahfud, M., 2022. Kinetics and characterization of microalgae biofuel by microwave-assisted pyrolysis using activated carbon. J. Eng. Technolog. Sci. 54, 318-331. https://doi.org/10.5614/j.eng.technol.sci.2022.54.2.7.

[7]

Aswie, V., Qadariyah, L., Mahfud, M., 2021. Pyrolysis of microalgae chlorella sp. using activated carbon as catalyst for biofuel production. Bull. Chem. React. Eng. Catal. 16, 205-213. https://doi.org/10.9767/bcrec.16.1.10316.205-213.

[8]

Baloyi, N.P., Nseke, J.M., Makhatha, M.E., 2022. Application of response surface methodology (RSM) for simultaneous optimization of kinetic parameters affecting gold leaching in thiosulfate based media: a statistical approach. J. Chem. https://doi.org/10.1155/2022/8348167, 2022.

[9]

Basumatary, S.F., Brahma, Sona, Hoque, M., Das, B.K., Selvaraj, M., Brahma, Sujata, Basumatary, S., 2023. Advances in CaO-based catalysts for sustainable biodiesel synthesis. Green Energy Res. 1, 100032. https://doi.org/10.1016/j.gerr.2023.100032.

[10]

Borges, F.C., Xie, Q., Min, M., Muniz, L.A.^O.R., Farenzena, M., Trierweiler, J.O., Chen, P., Ruan, R., 2014. Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresour. Technol. 166, 518-526. https://doi.org/10.1016/j.biortech.2014.05.100.

[11]

Brown, T.R., Wright, M.M., Brown, R.C., 2011. Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels Bioprod. Bioref. 5, 54-68. https://doi.org/10.1002/bbb.254.

[12]

Das, S., Goud, V.V., 2021. RSM-optimised slow pyrolysis of rice husk for bio-oil production and its upgradation. Energy 225. https://doi.org/10.1016/j.energy.2021.120161.

[13]

de Boer, K., Moheimani, N.R., Borowitzka, M.A., Bahri, P.A., 2012. Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J. Appl. Phycol. https://doi.org/10.1007/s10811-012-9835-z.

[14]

Demirbaş A., 2006. Oily products from mosses and algae via pyrolysis. Energy Sources, Part A Recovery, Util. Environ. Eff. 28, 933-940. https://doi.org/10.1080/009083190910389.

[15]

Deshmukh, S., Kumar, R., Bala, K., 2019. Microalgae biodiesel: a review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process. Technol. 191, 232-247. https://doi.org/10.1016/j.fuproc.2019.03.013.

[16]

Du, Z., Hu, B., Ma, X., Cheng, Y., Liu, Y., Lin, X., Wan, Y., Lei, H., Chen, P., Ruan, R., 2013. Catalytic pyrolysis of microalgae and their three major components: carbohydrates, proteins, and lipids. Bioresour. Technol. 130, 777-782. https://doi.org/10.1016/j.biortech.2012.12.115.

[17]

Du, Z., Li, Y., Wang, X., Wan, Y., Chen, Q., Wang, C., Lin, X., Liu, Y., Chen, P., Ruan, R., 2011. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 102, 4890-4896. https://doi.org/10.1016/j.biortech.2011.01.055.

[18]

Fang, P., Gong, Z., Wang, Zhenbo, Wang, Zhentong, Meng, F., 2019. Study on combustion and emission characteristics of microalgae and its extraction residue with TG-MS. Renew. Energy 140, 884-894. https://doi.org/10.1016/j.renene.2019.03.114.

[19]

Figueira, C.E., Moreira, P.F., Giudici, R., 2015. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris. Bioresour. Technol. 198, 717-724. https://doi.org/10.1016/j.biortech.2015.09.059.

[20]

Goh, C.S., Lee, K.T., 2010. A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew. Sustain. Energy Rev. 14, 842-848. https://doi.org/10.1016/j.rser.2009.10.001.

[21]

Gong, Z., Fang, P., Wang, Z., Li, Q., Li, X., Meng, F., Zhang, H., Liu, L., 2019. Catalytic pyrolysis of chemical extraction residue from microalgae biomass. Renew. Energy. https://doi.org/10.1016/j.renene.2019.10.158.

[22]

Guo, F., Wang, X., Yang, X., 2017. Potential pyrolysis pathway assessment for microalgaebased aviation fuel based on energy conversion efficiency and life cycle. Energy Convers. Manag. 132, 272-280. https://doi.org/10.1016/j.enconman.2016.11.020.

[23]

Harun, R., Singh, M., Forde, G.M., Danquah, M.K., 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 14, 1037-1047. https://doi.org/10.1016/j.rser.2009.11.004.

[24]

Hu, Z., Ma, X., Chen, C., 2012. A study on experimental characteristic of microwaveassisted pyrolysis of microalgae. Bioresour. Technol. 107, 487-493. https://doi.org/10.1016/j.biortech.2011.12.095.

[25]

Huang, Y.F., Chiueh, P. Te, Lo, S.L., 2016. A review on microwave pyrolysis of lignocellulosic biomass. Sustain. Environ. Res. 26, 103-109. https://doi.org/10.1016/j.serj.2016.04.012.

[26]

Kalsum, U., Kusuma, H.S., Roesyadi, A., Mahfud, M., 2019. Lipid extraction from spirulina platensis using microwave for biodiesel production. Kor. Chem. Eng. Res. 57, 301-304. https://doi.org/10.9713/kcer.2019.57.2.301.

[27]

Kalsum, U., Kusuma, H.S., Roesyadi, A., Mahfud, M., 2018. Production biodiesel via insitu transesterification from chlorella sp. Using Microwave with base catalyst. Kor. Chem. Eng. Res. 56, 773-778. https://doi.org/10.9713/kcer.2018.56.5.773.

[28]

Kim, S.W., Koo, B.S., Lee, D.H., 2014. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresour. Technol. 162, 96-102. https://doi.org/10.1016/j.biortech.2014.03.136.

[29]

Kumar, G., Shobana, S., Chen, W.H., Bach, Q.V., Kim, S.H., Atabani, A.E., Chang, J.S., 2017. A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chem. https://doi.org/10.1039/c6gc01937d.

[30]

Kumar, S., Aggrawal, M., Kumar, N., Deswal, V., 2022. Optimisation and prediction of Karanja oil transesterification with domestic microwave by RSM and ANN. Int. J. Ambient Energy 43, 3744-3751. https://doi.org/10.1080/01430750.2020.1848919.

[31]

Lee, S.Y., Khoiroh, I., Vo, D.V.N., Senthil Kumar, P., Show, P.L., 2021. Techniques of lipid extraction from microalgae for biofuel production: a review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01088-5.

[32]

Lo, S.L., Huang, Y.F., Chiueh, P. Te, Kuan, W.H., 2017. Microwave pyrolysis of lignocellulosic biomass. Energy Proc. 105, 41-46. https://doi.org/10.1016/j.egypro.2017.03.277.

[33]

Luo, L., van der Voet, E., Huppes, G., 2009. An energy analysis of ethanol from cellulosic feedstock-Corn stover. Renew. Sustain. Energy Rev. 13, 2003-2011. https://doi.org/10.1016/j.rser.2009.01.016.

[34]

Maher, K.D., Bressler, D.C., 2007. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol. 98, 2351-2368. https://doi.org/10.1016/j.biortech.2006.10.025.

[35]

Mahfud, M., Kalsum, U., Aswie, V., 2020. Biodiesel production through catalytic microwave in-situ transesterification of microalgae (Chlorella sp.). Int. J. Renew. Energy Dev. 9, 113-117. https://doi.org/10.14710/ijred.9.1.113-117.

[36]

Menéndez, J.A., Domínguez, A., Fernández, Y., Pis, J.J., 2007. Evidence of selfgasification during the microwave-induced pyrolysis of coffee hulls. Energy Fuel. 21, 373-378. https://doi.org/10.1021/ef060331i.

[37]

Mitu, M., Razus, D., Boldor, D., Marculescu, C., 2023. Flammability properties of the pyrolysis gas generated from willow wood. Processes 11. https://doi.org/10.3390/pr11072103.

[38]

Mo, L., Dai, H., Feng, L., Liu, B., Li, X., Chen, Y., Khan, S., 2020. In-situ catalytic pyrolysis upgradation of microalgae into hydrocarbon rich bio-oil: effects of nitrogen and carbon dioxide environment. Bioresour. Technol. 314, 123758. https://doi.org/10.1016/j.biortech.2020.123758.

[39]

Mushtaq, F., Mat, R., Ani, F.N., 2014. A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renew. Sustain. Energy Rev. 39, 555-574. https://doi.org/10.1016/j.rser.2014.07.073.

[40]

Mustapha, S.I., Rawat, I., Bux, F., Isa, Y.M., 2023. Enhancing the Efficiency of Thermal Conversion of Microalgae: a Review. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-02086-5.

[41]

Na, J.G., Park, Y.K., Kim, D. Il, Oh, Y.K., Jeon, S.G., Kook, J.W., Shin, J.H., Lee, S.H., 2015. Rapid pyrolysis behavior of oleaginous microalga, Chlorella sp. KR-1 with different triglyceride contents. Renew. Energy 81, 779-784. https://doi.org/10.1016/j.renene.2015.03.088.

[42]

Nurcahyani, P.R., Hashimoto, S., Matsumura, Y., 2020. Supercritical water gasification of microalgae with and without oil extraction. J. Supercrit. Fluids 165, 104936. https://doi.org/10.1016/j.supflu.2020.104936.

[43]

Pottmaier, D., Costa, M., Farrow, T., Oliveira, A.A.M., Alarcon, O., Snape, C., 2013. Comparison of rice husk and wheat straw: from slow and fast pyrolysis to char combustion. Energy Fuel. 27, 7115-7125. https://doi.org/10.1021/ef401748e.

[44]

Rajak, U., Nashine, P., Verma, T.N., Pugazhendhi, A., 2019. Performance, combustion and emission analysis of microalgae Spirulina in a common rail direct injection diesel engine. Fuel 255, 115855. https://doi.org/10.1016/j.fuel.2019.115855.

[45]

Saini, R.K., Prasad, P., Shang, X., Keum, Y.S., 2021. Advances in lipid extraction methods—a review. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222413643.

[46]

Sardi, B., Ningrum, R.F., Ardiansyah, V.A., Qadariyah, L., Mahfud, M., 2022. Production of liquid biofuels from microalgae chlorella sp. via catalytic slow pyrolysis. Int. J. Tech. 13, 147-156. https://doi.org/10.14716/ijtech.v13i1.4358.

[47]

Thangalazhy-Gopakumar, S., Adhikari, S., Chattanathan, S.A., Gupta, R.B., 2012. Catalytic pyrolysis of green algae for hydrocarbon production using H tZSM-5 catalyst. Bioresour. Technol. 118, 150-157. https://doi.org/10.1016/j.biortech.2012.05.080.

[48]

Wakatuntu, J., Olupot, P.W., Jjagwe, J., Menya, E., Okure, M., 2023. Optimization of pyrolysis conditions for production of rice husk-based bio-oil as an energy carrier. Res. Eng. 17. https://doi.org/10.1016/j.rineng.2023.100947.

[49]

Wang, K., Brown, R.C., 2007. Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chem. 12, 810-812.

[50]

Wang, K., Tester, J.W., 2023. Sustainable management of unavoidable biomass wastes. Green Energy Res. 1, 100005. https://doi.org/10.1016/j.gerr.2023.100005.

[51]

Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., Ding, Y., Wang, C., 2019. Pyrolysis of microalgae: a critical review. Fuel Process. Technol. 186, 53-72. https://doi.org/10.1016/j.fuproc.2018.12.012.

[52]

Yang, M., Chen, Y., Wang, Y., Yang, L., Cui, W., Liu, Y., Wang, C., Chen, Q., 2023. Investigation on in-situ deoxygenation performance of bio-oil model compound guaiacol over Ce-Fe/Al2O3 catalyst. Green Energy Res. 1, 100021. https://doi.org/10.1016/j.gerr.2023.100021.

[53]

Zeng, Y., Zhao, B., Zhu, L., Tong, D., Hu, C., 2013. Catalytic pyrolysis of natural algae from water blooms over nickel phosphide for high quality bio-oil production. RSC Adv. 3, 10806-10816. https://doi.org/10.1039/c3ra23453c.

[54]

Zhang, Y., Chen, P., Liu, S., Fan, L., Zhou, N., Min, M., Cheng, Y., Peng, P., Anderson, E., Wang, Y., Wan, Y., Liu, Y., Li, B., Ruan, R., 2017. Microwave-assisted pyrolysis of biomass for bio-oil production. In: Pyrolysis. InTech. https://doi.org/10.5772/67442.

AI Summary AI Mindmap
PDF (1596KB)

369

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/