Bioactive and Antioxidant Potential Agaricus bisporus Extracts Obtained by Different Extraction Methods and UV-B Irradiation

Seung Woon You , Veronika Šimora , Eva Ivanišová , Ivona Jančo , Zuzana Chlebová , Hana Ďúranová , Lucia Gabríny , Miroslava Kačániová , Fábio Gonçalves Macêdo de Medeiros , Roberta Targino Hoskin , Marvin L. Moncada

Food Bioengineering ›› 2025, Vol. 4 ›› Issue (1) : 113 -124.

PDF
Food Bioengineering ›› 2025, Vol. 4 ›› Issue (1) : 113 -124. DOI: 10.1002/fbe2.70008
RESEARCH ARTICLE

Bioactive and Antioxidant Potential Agaricus bisporus Extracts Obtained by Different Extraction Methods and UV-B Irradiation

Author information +
History +
PDF

Abstract

The goal of this study was to establish an efficient protocol for producing bioactive-rich mushroom extracts for food ingredients development. For this, fresh mushrooms were dried, ground, and submitted to different extraction protocols—ethanolic (EE), fermentation-assisted (FAE), or enzyme-assisted extraction (EAE). In addition, ultraviolet B (UV-B) irradiation, coupled with the extraction protocols, was experimentally studied for potential improvement of extracts bioactivity and yields. The extraction yield (EY), bioactivity (total phenolic content TPC, phenolic acids, flavonoids, and antioxidant activity), α-, β-, and total glucan contents, and mineral content were evaluated. EAE yielded the highest EY (26.48%–31.30%) while EE resulted in the highest TPC, phenolic acids, flavonoids, and antioxidant activity (p < 0.05). The β-glucan content (0.13%–0.93%) was not affected by extraction type or UV-B irradiation (p > 0.05). All extracts were rich in essential minerals with low potential toxicity. Based on the high EY, phenolic load, antioxidant activity, glucans, and mineral contents, EAE proved to be an effective method to obtain bioactive-rich mushroom extracts. Overall, UV-B irradiation did not show significant results in improving bioactivity of mushroom extracts. Our results deliver a realistic roadmap to explore mushrooms as rich sources of phytochemicals for food and nutraceuticals applications.

Keywords

antioxidant / bioactive / mushrooms / phenolics / revalorization

Cite this article

Download citation ▾
Seung Woon You, Veronika Šimora, Eva Ivanišová, Ivona Jančo, Zuzana Chlebová, Hana Ďúranová, Lucia Gabríny, Miroslava Kačániová, Fábio Gonçalves Macêdo de Medeiros, Roberta Targino Hoskin, Marvin L. Moncada. Bioactive and Antioxidant Potential Agaricus bisporus Extracts Obtained by Different Extraction Methods and UV-B Irradiation. Food Bioengineering, 2025, 4(1): 113-124 DOI:10.1002/fbe2.70008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acharya, K., S. Nandi, and A. K. Dutta. 2019. “Microanatomical and Physicochemical Characterization and Antioxidative Activity of Methanolic Extract of Oudemansiella canarii (Jungh.) Höhn.” Turkish Journal of Pharmaceutical Sciences 16: 76–81. https://doi.org/10.4274/tjps.19981.

[2]

Alkin, M., E. Söğüt, and A. C. Seydim. 2021. “Determination of Bioactive Properties of Different Edible Mushrooms From Turkey.” Journal of Food Measurement and Characterization 15: 3608–3617. https://doi.org/10.1007/s11694-021-00941-7.

[3]

Apak, R., M. Özyürek, K. Güçlü, and E. Çapanoğlu. 2016. “Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays.” Journal of Agricultural and Food Chemistry 64: 997–1027. https://doi.org/10.1021/acs.jafc.5b04739.

[4]

Araújo, A. C. M. A., É. Resende de Oliveira, E. G. T. Menezes, B. O. Dias, A. W. C. Terra, and F. Queiroz. 2018. “Solvent Effect on the Extraction of Soluble Solids From Murici and Pequi Seeds.” Journal of Food Process Engineering 41: e12813. https://doi.org/10.1111/jfpe.12813.

[5]

Ashraf Khan, A., A. Gani, F. A. Masoodi, S. Kousar, and M. Ahmad. 2014. “Antioxidant and Functional Properties of B-Glucan Extracted From Edible Mushrooms Agaricus bisporus.” Pleurotus ostreatus and Coprinus Atramentarius I & II: 210–214.

[6]

Bach, F., C. V. Helm, M. B. Bellettini, G. M. Maciel, and C. W. I. Haminiuk. 2017. “Edible Mushrooms: A Potential Source of Essential Amino Acids, Glucans and Minerals.” International Journal of Food Science & Technology 52: 2382–2392. https://doi.org/10.1111/ijfs.13522.

[7]

Bibi Sadeer, N., D. Montesano, S. Albrizio, G. Zengin, and M. F. Mahomoodally. 2020. “The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations.” Antioxidants 9: 709. https://doi.org/10.3390/antiox9080709.

[8]

Blumfield, M., K. Abbott, E. Duve, T. Cassettari, S. Marshall, and F. Fayet-Moore. 2020. “Examining the Health Effects and Bioactive Components in Agaricus bisporus Mushrooms: A Scoping Review.” Journal of Nutritional Biochemistry 84: 108453. https://doi.org/10.1016/j.jnutbio.2020.108453.

[9]

Buruleanu, L. C., C. Radulescu, A. A. Georgescu, et al. 2018. “Statistical Characterization of the Phytochemical Characteristics of Edible Mushroom Extracts.” Analytical Letters 51: 1039–1059. https://doi.org/10.1080/00032719.2017.1366499.

[10]

Cardwell, G., J. F. Bornman, A. P. James, and L. J. Black. 2018. “A Review of Mushrooms as a Potential Source of Dietary Vitamin D.” Nutrients 10: 1498. https://doi.org/10.3390/nu10101498.

[11]

Castro, L. M. G., N. F. Borges, E. M. C. Alexandre, and M. Pintado. 2025. “Ohmic, Ultraviolet, and Infrared Heating-Assisted Extraction of Bioactive Compounds.” In Application of Emerging Technologies and Strategies to Extract Bioactive Compounds, 143–170. Elsevier. https://doi.org/10.1016/B978-0-443-18975-3.00004-8.

[12]

Çayan, F., G. Tel-Çayan, E. Deveci, and M. E. Duru. 2021. “A Comprehensive Study on Phenolic Compounds and Bioactive Properties of Five Mushroom Species via Chemometric Approach.” Journal of Food Processing and Preservation 45: e15695. https://doi.org/10.1111/jfpp.15695.

[13]

Chellan, P., and P. J. Sadler. 2015. “The Elements of Life and Medicines.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373: 20140182. https://doi.org/10.1098/rsta.2014.0182.

[14]

Danalache, F., P. Mata, V. D. Alves, and M. Moldão-Martins. 2018. “Enzyme-Assisted Extraction of Fruit Juices.” In Fruit Juices, 183–200. Elsevier. https://doi.org/10.1016/B978-0-12-802230-6.00010-2.

[15]

Das, N., M. E. Islam, N. Jahan, et al. 2014. “Antioxidant Activities of Ethanol Extracts and Fractions of Crescentia cujete Leaves and Stem Bark and the Involvement of Phenolic Compounds.” BMC Complementary and Alternative Medicine 14: 45. https://doi.org/10.1186/1472-6882-14-45.

[16]

Devi, P. V., J. Islam, P. Narzary, D. Sharma, and F. Sultana. 2024. “Bioactive Compounds, Nutraceutical Values and Its Application in Food Product Development of Oyster Mushroom.” Journal of Future Foods 4: 335–342. https://doi.org/10.1016/j.jfutfo.2023.11.005.

[17]

Fidrianny, I., A. R. Choirunnisa, and K. Ruslan. 2016. “Comparison of Five Antioxidant Assays for Estimating Antioxidant Capacity From Three Solanum SP. Extracts.” Asian Journal of Pharmaceutical and Clinical Research 9: 123–128. https://doi.org/10.22159/ajpcr.2016.v9s2.13155.

[18]

Gąsecka, M., Z. Magdziak, M. Siwulski, and M. Mleczek. 2018. “Profile of Phenolic and Organic Acids, Antioxidant Properties and Ergosterol Content in Cultivated and Wild Growing Species of Agaricus.” European Food Research and Technology 244: 259–268. https://doi.org/10.1007/s00217-017-2952-9.

[19]

Golak-Siwulska, I., A. Kałużewicz, T. Spiżewski, M. Siwulski, and K. Sobieralski. 2018. “Bioactive Compounds and Medicinal Properties of Oyster Mushrooms (Pleurotus sp.).” Folia Horticulturae 30: 191–201. https://doi.org/10.2478/fhort-2018-0012.

[20]

Guan, W., X. Fan, and R. Yan. 2012. “Effects of UV-C Treatment on Inactivation of Escherichia coli O157: H7, Microbial Loads, and Quality of Button Mushrooms.” Postharvest Biology and Technology 64: 119–125. https://doi.org/10.1016/j.postharvbio.2011.05.017.

[21]

Harbaum-Piayda, B., K. Palani, and K. Schwarz. 2016. “Influence of Postharvest UV-B Treatment and Fermentation on Secondary Plant Compounds in White Cabbage Leaves.” Food Chemistry 197: 47–56. https://doi.org/10.1016/j.foodchem.2015.10.065.

[22]

Hu, Y., X. Y. Wang, C. Qin, T. T. Li, W. Liu, and D. F. Ren. 2022. “Fermentation of Rose Residue by Lactiplantibacillus plantarum B7 and Bacillus subtilis Natto Promotes Polyphenol Content and Beneficial Bioactivity.” Journal of Bioscience and Bioengineering 134: 501–507. https://doi.org/10.1016/j.jbiosc.2022.08.002.

[23]

Huang, S. J., C. P. Lin, and S. Y. Tsai. 2015. “Vitamin D2 Content and Antioxidant Properties of Fruit Body and Mycelia of Edible Mushrooms by UV-B Irradiation.” Journal of Food Composition and Analysis 42: 38–45. https://doi.org/10.1016/j.jfca.2015.02.005.

[24]

Irianto, I., N. R. Putra, Y. Yustisia, et al. 2025. “Green Technologies in Food Colorant Extraction: A Comprehensive Review.” South African Journal of Chemical Engineering 51: 22–34. https://doi.org/10.1016/j.sajce.2024.10.013.

[25]

Ivanišová, E., O. Grygorieva, V. Abrahamová, Z. Schubertova, M. Terentjeva, and J. Brindza. 2017. “Characterization of Morphological Parameters and Biological Activity of Jujube Fruit (Ziziphus jujuba Mill.).” Journal of Berry Research 7: 249–260. https://doi.org/10.3233/JBR-170162.

[26]

Jabłońska-Ryś, E., A. Sławińska, and D. Szwajgier. 2016. “Effect of Lactic Acid Fermentation on Antioxidant Properties and Phenolic Acid Contents of Oyster (Pleurotus ostreatus) and Chanterelle (Cantharellus cibarius) Mushrooms.” Food Science and Biotechnology 25: 439–444. https://doi.org/10.1007/s10068-016-0060-4.

[27]

Joradon, P., V. Rungsardthong, U. Ruktanonchai, et al. 2024. “Extraction of Bioactive Compounds From Lion's Mane Mushroom By-Product Using Supercritical CO2 Extraction.” Journal of Supercritical Fluids 206: 106162. https://doi.org/10.1016/j.supflu.2023.106162.

[28]

Ketnawa, S., and Y. Ogawa. 2019. “Evaluation of Protein Digestibility of Fermented Soybeans and Changes in Biochemical Characteristics of Digested Fractions.” Journal of Functional Foods 52: 640–647. https://doi.org/10.1016/j.jff.2018.11.046.

[29]

Ketnawa, S., and Y. Ogawa. 2021. “In Vitro Protein Digestibility and Biochemical Characteristics of Soaked, Boiled and Fermented Soybeans.” Scientific Reports 11: 14257. https://doi.org/10.1038/s41598-021-93451-x.

[30]

Khaskheli, A., S. Khaskheli, Y. Liu, et al. 2015. “Analysis of Physicochemical, Antioxidant Properties and Sensory Characteristics of Shiitake Mushroom Pickles.” Journal of Food and Nutrition Research 5: 562–568.

[31]

Kim, M. J., J. Lee, and J. S. Lee. 2014. “Effect of Ultraviolet-B Irradiation on Antioxidative Properties of Aqueous Extracts From Shiitake (Lentinus edodes) Mushrooms.” International Journal of Food Science & Technology 49: 2276–2282. https://doi.org/10.1111/ijfs.12558.

[32]

Lee, N. K., and B.-Y. Aan. 2016. “Optimization of Ergosterol to Vitamin D2 Synthesis in Agaricus bisporus Powder Using Ultraviolet-B Radiation.” Food Science and Biotechnology 25: 1627–1631. https://doi.org/10.1007/s10068-016-0250-0.

[33]

Leong, Y. K., F. C. Yang, and J. S. Chang. 2021. “Extraction of Polysaccharides From Edible Mushrooms: Emerging Technologies and Recent Advances.” Carbohydrate Polymers 251: 117006. https://doi.org/10.1016/j.carbpol.2020.117006.

[34]

Li, S., M. Liu, C. Zhang, et al. 2018. “Purification, In Vitro Antioxidant and In Vivo Anti-Aging Activities of Soluble Polysaccharides by Enzyme-Assisted Extraction From Agaricus bisporus.” International Journal of Biological Macromolecules 109: 457–466. https://doi.org/10.1016/j.ijbiomac.2017.12.108.

[35]

Liu, J., L. Jia, J. Kan, and C. Jin. 2013. “In Vitro and In Vivo Antioxidant Activity of Ethanolic Extract of White Button Mushroom (Agaricus bisporus).” Food and Chemical Toxicology 51: 310–316. https://doi.org/10.1016/j.fct.2012.10.014.

[36]

Lu, Y., J. Zhang, X. Wang, et al. 2016. “Effects of Uv-C Irradiation on the Physiological and Antioxidant Responses of Button Mushrooms (Agaricus bisporus) During Storage.” International Journal of Food Science & Technology 51: 1502–1508. https://doi.org/10.1111/ijfs.13100.

[37]

Mazzutti, S., S. R. S. Ferreira, C. A. S. Riehl, A. Smania, F. A. Smania, and J. Martínez. 2012. “Supercritical Fluid Extraction of Agaricus brasiliensis: Antioxidant and Antimicrobial Activities.” Journal of Supercritical Fluids 70: 48–56. https://doi.org/10.1016/j.supflu.2012.06.010.

[38]

Morales, D., F. R. Smiderle, A. J. Piris, C. Soler-Rivas, and M. Prodanov. 2019. “Production of a β-D-glucan-Rich Extract From Shiitake Mushrooms (Lentinula edodes) by an Extraction/Microfiltration/Reverse Osmosis (Nanofiltration) Process.” Innovative Food Science & Emerging Technologies 51: 80–90. https://doi.org/10.1016/j.ifset.2018.04.003.

[39]

Nawawi, W. M. F. W., K. Y. Lee, E. Kontturi, A. Bismarck, and A. Mautner. 2020. “Surface Properties of Chitin-Glucan Nanopapers From Agaricus bisporus.” International Journal of Biological Macromolecules 148: 677–687. https://doi.org/10.1016/j.ijbiomac.2020.01.141.

[40]

Ndungutse, V., R. Mereddy, and Y. Sultanbawa. 2015. “Bioactive Properties of Mushroom (Agaricus bisporus) Stipe Extracts: Functional Properties of Mushroom Stipe Extracts.” Journal of Food Processing and Preservation 39: 2225–2233. https://doi.org/10.1111/jfpp.12467.

[41]

Ng, Z. X., and N. F. Rosman. 2019. “In Vitro Digestion and Domestic Cooking Improved the Total Antioxidant Activity and Carbohydrate-Digestive Enzymes Inhibitory Potential of Selected Edible Mushrooms.” Journal of Food Science and Technology 56: 865–877. https://doi.org/10.1007/s13197-018-3547-6.

[42]

Palanisamy, M., L. Aldars-García, A. Gil-Ramírez, et al. 2014. “Pressurized Water Extraction of β-Glucan Enriched Fractions With Bile Acids-Binding Capacities Obtained From Edible Mushrooms.” Biotechnology Progress 30: 391–400. https://doi.org/10.1002/btpr.1865.

[43]

Pan, S., S. Wu, and J. Kim. 2011. “Preparation of Glucosamine by Hydrolysis of Chitosan With Commercial α-Amylase and Glucoamylase.” Journal of Zhejiang University Science B 12: 931–934. https://doi.org/10.1631/jzus.B1100065.

[44]

Paulucci, V. P., R. O. Couto, C. C. C. Teixeira, and L. A. P. Freitas. 2013. “Optimization of the Extraction of Curcumin From Curcuma longa Rhizomes.” Revista Brasileira de Farmacognosia 23: 94–100. https://doi.org/10.1590/S0102-695X2012005000117.

[45]

Prieto, P., M. Pineda, and M. Aguilar. 1999. “Spectrophotometric Quantitation of Antioxidant Capacity Through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E.” Analytical Biochemistry 269: 337–341. https://doi.org/10.1006/abio.1999.4019.

[46]

Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. “Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay.” Free Radical Biology and Medicine 26, no. 9–10: 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3.

[47]

Roncero-Ramos, I., and C. Delgado-Andrade. 2017. “The Beneficial Role of Edible Mushrooms in Human Health.” Current Opinion in Food Science 14: 122–128. https://doi.org/10.1016/j.cofs.2017.04.002.

[48]

Roncero-Ramos, I., M. Mendiola-Lanao, M. Pérez-Clavijo, and C. Delgado-Andrade. 2017. “Effect of Different Cooking Methods on Nutritional Value and Antioxidant Activity of Cultivated Mushrooms.” International Journal of Food Sciences and Nutrition 68: 287–297. https://doi.org/10.1080/09637486.2016.1244662.

[49]

Savin, S., O. Craciunescu, A. Oancea, et al. 2020. “Antioxidant, Cytotoxic and Antimicrobial Activity of Chitosan Preparations Extracted From Ganoderma Lucidum Mushroom.” Chemistry & Biodiversity 17: e2000175. https://doi.org/10.1002/cbdv.202000175.

[50]

Savoie, J. M., N. Minvielle, and M. L. Largeteau. 2008. “Radical-Scavenging Properties of Extracts from the White Button Mushroom, Agaricus bisporus.” Journal of the Science of Food and Agriculture 88: 970–975. https://doi.org/10.1002/jsfa.3175.

[51]

Shahwar, D., and M. A. Raza. 2012. “Antioxidant Potential of Phenolic Extracts of Mimusops elengi.” Asian Pacific Journal of Tropical Biomedicine 2: 547–550. https://doi.org/10.1016/S2221-1691(12)60094-X.

[52]

Shang, X., S. Bai, L. Wen, et al. 2025. “UV-B Radiation Mitigates Oxidative Stress Damage in Postharvest Agaricus bisporus by Modulating the Antioxidant Defense System.” Postharvest Biology and Technology 219: 113266. https://doi.org/10.1016/j.postharvbio.2024.113266.

[53]

Shinwari, K. J.2021. “Emerging Technologies for the Recovery of Bioactive Compounds From Saffron Species.” In Saffron, 143–182. Elsevier. https://doi.org/10.1016/b978-0-12-821219-6.00004-x.

[54]

Skapska, S., L. Owczarek, U. Jasinska, A. Halasinska, J. Danielczuk, and B. Sokolowska. 2008. “Changes in the Antioxidant Capacity of Edible Mushrooms During Lactic Acid Fermentation.” Zywnosc Nauka Technologia Jakosc (Poland) 15: 243–250.

[55]

Smiderle, F. R., G. Alquini, M. Z. Tadra-Sfeir, M. Iacomini, H. J. Wichers, and L. J. L. D. Van Griensven. 2013. “Agaricus bisporus and Agaricus brasiliensis (1 → 6)-β-d-Glucans Show Immunostimulatory Activity on Human THP-1 Derived Macrophages.” Carbohydrate Polymers 94: 91–99. https://doi.org/10.1016/j.carbpol.2012.12.073.

[56]

Sun, Y., H. He, Q. Wang, X. Yang, S. Jiang, and D. Wang. 2022. “A Review of Development and Utilization for Edible Fungal Polysaccharides: Extraction, Chemical Characteristics, and Bioactivities.” Polymers 14: 4454. https://doi.org/10.3390/polym14204454.

[57]

Tel, G., M. Ozturk, M. E. Duru, and A. Turkoglu. 2015. “Antioxidant and Anticholinesterase Activities of Five Wild Mushroom Species With Total Bioactive Contents.” Pharmaceutical Biology 53: 824–830. https://doi.org/10.3109/13880209.2014.943245.

[58]

Tiwari, A., G. Singh, V. Sharma, R. K. Srivastava, and S. Sharma. 2021. “Harnessing the Potential of UVB Irradiation for Improving the Nutraceutical Properties of Edible Xylotrophic Mushroom Dried Powder.” LWT 150: 111913. https://doi.org/10.1016/j.lwt.2021.111913.

[59]

Usman, M., G. Murtaza, and A. Ditta. 2021. “Nutritional, Medicinal, and Cosmetic Value of Bioactive Compounds in Button Mushroom (Agaricus bisporus): A Review.” Applied Sciences 11: 5943. https://doi.org/10.3390/app11135943.

[60]

Valková, V., H. Dúranová, M. Miskeje, E. Ivanisová, L. Gabríny, and M. Kacánivoá. 2021. “Physico-Chemical, Antioxidant and Microbiological Characteristics of Bread Supplemented With 1% Grape Seed Micropowder.” Journal of Food and Nutrition Research 60: 9–17.

[61]

Valverde, M. E., T. Hernández-Pérez, and O. Paredes-López. 2015. “Edible Mushrooms: Improving Human Health and Promoting Quality Life.” International Journal of Microbiology 2015: 1–14. https://doi.org/10.1155/2015/376387.

[62]

Wang, C. Y., S. J. Wu, and Y. T. Shyu. 2014. “Antioxidant Properties of Certain Cereals as Affected by Food-Grade Bacteria Fermentation.” Journal of Bioscience and Bioengineering 117: 449–456. https://doi.org/10.1016/j.jbiosc.2013.10.002.

[63]

Wu, S.2011. “Preparation of Water Soluble Chitosan by Hydrolysis With Commercial α-Amylase Containing Chitosanase Activity.” Food Chemistry 128: 769–772. https://doi.org/10.1016/j.foodchem.2011.03.111.

[64]

Wu, X., W. Guan, R. Yan, J. Lei, L. Xu, and Z. Wang. 2016. “Effects of Uv-C on Antioxidant Activity, Total Phenolics and Main Phenolic Compounds of the Melanin Biosynthesis Pathway in Different Tissues of Button Mushroom.” Postharvest Biology and Technology 118: 51–58. https://doi.org/10.1016/j.postharvbio.2016.03.017.

[65]

Xue, D., and M. M. Farid. 2015. “Pulsed Electric Field Extraction of Valuable Compounds From White Button Mushroom (Agaricus bisporus).” Innovative Food Science & Emerging Technologies 29: 178–186. https://doi.org/10.1016/j.ifset.2015.03.012.

[66]

Yin, X., Q. You, and Z. Jiang. 2011. “Optimization of Enzyme Assisted Extraction of Polysaccharides From Tricholoma matsutake by Response Surface Methodology.” Carbohydrate Polymers 86: 1358–1364. https://doi.org/10.1016/j.carbpol.2011.06.053.

[67]

Yin, X., Q. You, and X. Zhou. 2015. “Complex Enzyme-Assisted Extraction, Purification, and Antioxidant Activity of Polysaccharides From the Button Mushroom, Agaricus bisporus (Higher Basidiomycetes).” International Journal of Medicinal Mushrooms 17: 987–996. https://doi.org/10.1615/IntJMedMushrooms.v17.i10.80.

[68]

You, S. W., R. T. Hoskin, S. Komarnytsky, and M. Moncada. 2022. “Mushrooms as Functional and Nutritious Food Ingredients for Multiple Applications.” ACS Food Science & Technology 2: 1184–1195. https://doi.org/10.1021/acsfoodscitech.2c00107.

[69]

Yu, Y., Z. Liu, K. Song, L. Li, and M. Chen. 2023. “Medicinal Value of Edible Mushroom Polysaccharides: A Review.” Journal of Future Foods 3: 16–23. https://doi.org/10.1016/j.jfutfo.2022.09.003.

[70]

Zhang, Q., Y. Xu, D. Bukvicki, et al. 2024. “Phenolic Compounds in Dietary Target the Regulation of Gut Microbiota: Role in Health and Disease.” Food Bioscience 62: 105107. https://doi.org/10.1016/j.fbio.2024.105107.

[71]

Zhang, W., and W. Jiang. 2019. “UV Treatment Improved the Quality of Postharvest Fruits and Vegetables by Inducing Resistance.” Trends in Food Science & Technology 92: 71–80. https://doi.org/10.1016/j.tifs.2019.08.012.

[72]

Zhao, Q., X. Liu, L. Cui, and C. Ma. 2024. “Extraction and Bioactivities of the Chemical Composition From Pleurotus ostreatus: A Review.” Journal of Future Foods 4: 111–118. https://doi.org/10.1016/j.jfutfo.2023.06.001.

RIGHTS & PERMISSIONS

2025 The Author(s). Food Bioengineering published by John Wiley & Sons Australia, Ltd on behalf of State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology.

AI Summary AI Mindmap
PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/