Mechanical Properties of Polylactic Acid Nanofiber Films Reinforced by Modified Cellulose Nanocrystals

Chaoqiao Zhu , Ming Tian , Dequan Zhang , Qingfeng Yang , Debao Wang , Simin Fan , Xin Li , Wei Yang , Chengli Hou

Food Bioengineering ›› 2025, Vol. 4 ›› Issue (1) : 28 -38.

PDF
Food Bioengineering ›› 2025, Vol. 4 ›› Issue (1) : 28 -38. DOI: 10.1002/fbe2.70000
RESEARCH ARTICLE

Mechanical Properties of Polylactic Acid Nanofiber Films Reinforced by Modified Cellulose Nanocrystals

Author information +
History +
PDF

Abstract

In this study, the surface of cellulose nanocrystals was first modified with citric acid, and the resultant modified cellulose nanocrystals (MCNC) were subsequently utilized as a reinforcement phase for polylactic acid (PLA). Findings indicated that MCNC interacted with PLA through hydrogen bonding, resulting in improved thermal stability, mechanical properties, and surface hydrophobicity of PLA nanofiber films. Specifically, the thermal degradation temperature, tensile strength, elongation at break, and contact angle of the nanofiber films increased by 19°C, 30.04%, 49.11%, and 11.22°, respectively, with a 3% addition of MCNC. Subsequently, utilizing PLA/MCNC as the base material and kaempferol as the active ingredient, a preliminary exploration into its potential as an active packaging material was carried out. When the addition amount of kaempferol was 10%, the DPPH and ABTS free radical scavenging ability of the nanofiber film reached more than 90%, demonstrating its application potential as an active packaging material. These results offer a promising strategy for the effective dispersion of CNC within PLA matrices, thereby expanding the potential applications of PLA in the field of active packaging.

Keywords

active packaging / cellulose nanocrystals / electrostatic spinning / esterification reaction / polylactic acid

Cite this article

Download citation ▾
Chaoqiao Zhu, Ming Tian, Dequan Zhang, Qingfeng Yang, Debao Wang, Simin Fan, Xin Li, Wei Yang, Chengli Hou. Mechanical Properties of Polylactic Acid Nanofiber Films Reinforced by Modified Cellulose Nanocrystals. Food Bioengineering, 2025, 4(1): 28-38 DOI:10.1002/fbe2.70000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azka, M. A., S. M. Sapuan, H. Abral, E. S. Zainudin, and F. A. Aziz. 2024. “An Examination of Recent Research of Water Absorption Behavior of Natural Fiber Reinforced Polylactic Acid (PLA) Composites: A Review.” International Journal of Biological Macromolecules 268: 131845. https://doi.org/10.1016/j.ijbiomac.2024.131845.

[2]

Chaturvedi, S., A. Kataria, V. Chaudhary, et al. 2023. “Bionanocomposites Reinforced With Cellulose Fibers and Agro-Industrial Wastes.” In Cellulose Fibre Reinforced Composites, edited by R. ArunRamnath, M. R. Sanjay, S. Siengchin, and V. Fiore, 317–342. Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00017-3.

[3]

Cheran, E., C. Sharmila Rahale, P. Divyabharathi, C. Viswanathan, and L. Narayanan. 2024. “Corn Cob Nanocellulose Packaging for Increasing the Shelf Life of Food Products.” International Journal of Biological Macromolecules 268: 131403. https://doi.org/10.1016/j.ijbiomac.2024.131403.

[4]

Dhali, K., F. Daver, P. Cass, and B. Adhikari. 2022. “Surface Modification of the Cellulose Nanocrystals Through Vinyl Silane Grafting.” International Journal of Biological Macromolecules 200: 397–408. https://doi.org/10.1016/j.ijbiomac.2022.01.079.

[5]

Dhar, P., D. Tarafder, A. Kumar, and V. Katiyar. 2016. “Thermally Recyclable Polylactic Acid/Cellulose Nanocrystal Films Through Reactive Extrusion Process.” Polymer 87: 268–282. https://doi.org/10.1016/j.polymer.2016.02.004.

[6]

Ertan, K., A. Celebioglu, R. Chowdhury, et al. 2023. “Carvacrol/Cyclodextrin Inclusion Complex Loaded Gelatin/Pullulan Nanofibers for Active Food Packaging Applications.” Food Hydrocolloids 142: 108864. https://doi.org/10.1016/j.foodhyd.2023.108864.

[7]

Etale, A., A. J. Onyianta, J.-C. Eloi, J. Rowlandson, and S. J. Eichhorn. 2024. “Phosphorylated Cellulose Nanocrystals: Optimizing Production by Decoupling Hydrolysis and Surface Modification.” Carbohydrate Polymers 325: 121560. https://doi.org/10.1016/j.carbpol.2023.121560.

[8]

Fan, S., D. Wang, X. Wen, et al. 2023. “Incorporation of Cinnamon Essential Oil-Loaded Pickering Emulsion for Improving Antimicrobial Properties and Control Release of Chitosan/Gelatin Films.” Food Hydrocolloids 138: 108438. https://doi.org/10.1016/j.foodhyd.2022.108438.

[9]

Gao, C., P. Chen, Y. Ma, et al. 2023. “Multifunctional Polylactic Acid Biocomposite Film for Active Food Packaging With UV Resistance, Antioxidant and Antibacterial Properties.” International Journal of Biological Macromolecules 253: 126494. https://doi.org/10.1016/j.ijbiomac.2023.126494.

[10]

Gazquez-Navarro, J. J., J. Ivorra-Martinez, L. Sanchez-Nacher, D. Garcia-Garcia, and J. Gomez-Caturla. 2024. “New Tartrate and α-Tocopherol Based Environmentally Friendly Plasticizers for Improvement of the Ductility of Polylactic Acid.” Polymer 308: 127361. https://doi.org/10.1016/j.polymer.2024.127361.

[11]

Gulzar, S., M. Tagrida, K. Nilsuwan, T. Prodpran, and S. Benjakul. 2022. “Electrospinning of Gelatin/Chitosan Nanofibers Incorporated With Tannic Acid and Chitooligosaccharides on Polylactic Acid Film: Characteristics and Bioactivities.” Food Hydrocolloids 133: 107916. https://doi.org/10.1016/j.foodhyd.2022.107916.

[12]

Huang, S., S. Zou, and Y. Wang. 2023. “Construction of Compostable Packaging With Antibacterial Property and Improved Performance Using Sprayed Coatings of Modified Cellulose Nanocrystals.” Carbohydrate Polymers 305: 120539. https://doi.org/10.1016/j.carbpol.2023.120539.

[13]

Karimi Sani, I., M. Masoudpour-Behabadi, M. Alizadeh Sani, et al. 2023. “Value-Added Utilization of Fruit and Vegetable Processing by-Products for the Manufacture of Biodegradable Food Packaging Films.” Food Chemistry 405: 134964. https://doi.org/10.1016/j.foodchem.2022.134964.

[14]

Kataria, A., S. Chaturvedi, V. Chaudhary, et al. 2023. “Cellulose Fiber-Reinforced Composites—History of Evolution, Chemistry, and Structure.” In Cellulose Fibre Reinforced Composites, edited by R. ArunRamnath, M. R. Sanjay, S. Siengchin, and V. Fiore, 1–22. Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00012-4.

[15]

Khanjanzadeh, H., R. Behrooz, N. Bahramifar, et al. 2018. “Surface Chemical Functionalization of Cellulose Nanocrystals by 3-Aminopropyltriethoxysilane.” International Journal of Biological Macromolecules 106: 1288–1296. https://doi.org/10.1016/j.ijbiomac.2017.08.136.

[16]

Li, M., L. Guo, Y. Mu, et al. 2024. “Gelatin Films Reinforced by Tannin-Nanocellulose Microgel With Improved Mechanical and Barrier Properties for Sustainable Active Food Packaging.” Food Hydrocolloids 149: 109642. https://doi.org/10.1016/j.foodhyd.2023.109642.

[17]

Li, S., X. Liu, X. Zhang, et al. 2024. “Preparation and Characterization of Zein-Tannic Acid Nanoparticles/Chitosan Composite Films and Application in the Preservation of Sugar Oranges.” Food Chemistry 437: 137673. https://doi.org/10.1016/j.foodchem.2023.137673.

[18]

Li, W., W. Sun, L. Jia, et al. 2022. “Poly-L-Lactic Acid (Plla)/Anthocyanin Nanofiber Color Indicator Film for Headspace Detection of Low-Level Bacterial Concentration.” International Journal of Biological Macromolecules 215: 123–131. https://doi.org/10.1016/j.ijbiomac.2022.06.034.

[19]

Liao, M., X. Jian, Y. Zhao, et al. 2023. “Sandwich-Like” Structure Electrostatic Spun Micro/Nanofiber Polylactic Acid-Polyvinyl Alcohol-Polylactic Acid Film Dressing With Metformin Hydrochloride and Puerarin for Enhanced Diabetic Wound Healing.” International Journal of Biological Macromolecules 253: 127223. https://doi.org/10.1016/j.ijbiomac.2023.127223.

[20]

Lin, D., Y. Li, Y. Huang, et al. 2022. “Properties of Polyvinyl Alcohol Films Reinforced by Citric Acid Modified Cellulose Nanocrystals and Silica Aerogels.” Carbohydrate Polymers 298: 120116. https://doi.org/10.1016/j.carbpol.2022.120116.

[21]

Lin, N., and A. Dufresne. 2014. “Surface Chemistry, Morphological Analysis and Properties of Cellulose Nanocrystals With Gradiented Sulfation Degrees.” Nanoscale 6, no. 10: 5384–5393. https://doi.org/10.1039/C3NR06761K.

[22]

Lin, N., J. Huang, P. R. Chang, J. Feng, and J. Yu. 2011. “Surface Acetylation of Cellulose Nanocrystal and Its Reinforcing Function in Poly(Lactic Acid).” Carbohydrate Polymers 83, no. 4: 1834–1842. https://doi.org/10.1016/j.carbpol.2010.10.047.

[23]

Liu, Y., X. Xu, M. Gao, et al. 2024. “Nanocellulose-Based Functional Materials for Physical, Chemical, and Biological Sensing: A Review of Materials, Properties, and Perspectives.” Industrial Crops and Products 212: 118326. https://doi.org/10.1016/j.indcrop.2024.118326.

[24]

Malbos, L. B., M. L. Iglesias-Montes, I. T. Seoane, V. P. Cyras, and L. B. Manfredi. 2024. “Biobased Ternary Composites for Food Packaging: Influence of Natural Plasticizers and Starch on Polylactic Acid Performance.” Journal of Materials Science 59: 20304–20324. https://doi.org/10.1007/s10853-024-10375-3.

[25]

Mo, J., Y. Wang, J. Wang, et al. 2022. “Hydrophobic/Oleophilic Polylactic Acid Electrospun Fibrous Membranes With the Silicone Semi-Interpenetrated Networks for Oil–Water Separation.” Journal of Materials Science 57, no. 33: 16048–16063. https://doi.org/10.1007/s10853-022-07634-6.

[26]

N'a, Z., F. M.s.a, T. I.s.m.a, B. M.s.m, and O. S.h. 2023. “Mechanical, Thermal and Antimicrobial Properties of Pla/Jackfruit Skin Composites Containing Thymol and Nanocellulose.” Materials Today: Proceedings. In press. https://doi.org/10.1016/j.matpr.2023.01.397.

[27]

Niu, W., Y. Guo, W. Huang, et al. 2022. “Aliphatic Chains Grafted Cellulose Nanocrystals With Core-Corona Structures for Efficient Toughening of Pla Composites.” Carbohydrate Polymers 285: 119200. https://doi.org/10.1016/j.carbpol.2022.119200.

[28]

Niu, X., Y. Liu, Y. Song, J. Han, and H. Pan. 2018. “Rosin Modified Cellulose Nanofiber as a Reinforcing and Co-Antimicrobial Agents in Polylactic Acid/Chitosan Composite Film for Food Packaging.” Carbohydrate Polymers 183: 102–109. https://doi.org/10.1016/j.carbpol.2017.11.079.

[29]

Ojogbo, E., C. Tzoganakis, and T. H. Mekonnen. 2025. “Silane-Modified Cellulose Nanocrystals (CNCs) Based Natural Rubber Composites.” Composites, Part A: Applied Science and Manufacturing 190: 108632. https://doi.org/10.1016/j.compositesa.2024.108632.

[30]

Sheng, W., L. Yang, Y. Yang, C. Wang, G. Jiang, and Y. Tian. 2025. “Photo-Responsive Cu-Tannic Acid Nanoparticle-Mediated Antibacterial Film for Efficient Preservation of Strawberries.” Food Chemistry 464: 141711. https://doi.org/10.1016/j.foodchem.2024.141711.

[31]

Sucinda, E. F., M. S. Abdul Majid, M. J. M. Ridzuan, E. M. Cheng, H. A. Alshahrani, and N. Mamat. 2021. “Development and Characterisation of Packaging Film From Napier Cellulose Nanowhisker Reinforced Polylactic Acid (Pla) Bionanocomposites.” International Journal of Biological Macromolecules 187: 43–53. https://doi.org/10.1016/j.ijbiomac.2021.07.069.

[32]

Sung, S. H., Y. Chang, and J. Han. 2017. “Development of Polylactic Acid Nanocomposite Films Reinforced With Cellulose Nanocrystals Derived From Coffee Silverskin.” Carbohydrate Polymers 169: 495–503. https://doi.org/10.1016/j.carbpol.2017.04.037.

[33]

Thompson, L., M. Nikzad, I. Sbarski, and A. Yu. 2022. “Esterified Cellulose Nanocrystals for Reinforced Epoxy Nanocomposites.” Progress in Natural Science: Materials International 32, no. 3: 328–333. https://doi.org/10.1016/j.pnsc.2022.05.001.

[34]

Wahlström, N., M. S. Hedenqvist, and F. Vilaplana. 2024. “Citric Acid Tailors the Mechanical and Barrier Properties of Arabinoxylan-Gluten Crosslinked Glycoprotein Films.” Food Hydrocolloids 153: 110012. https://doi.org/10.1016/j.foodhyd.2024.110012.

[35]

Wu, H., T. Li, L. Peng, et al. 2023. “Development and Characterization of Antioxidant Composite Films Based on Starch and Gelatin Incorporating Resveratrol Fabricated by Extrusion Compression Moulding.” Food Hydrocolloids 139: 108509. https://doi.org/10.1016/j.foodhyd.2023.108509.

[36]

Yanat, M., M. Muthurajan, M. Strubel, K. Grolle, and K. Schroën. 2023. “Polylactic Acid Films Reinforced With Chitin Nanocrystals: Biodegradation and Migration Behavior.” Food Packaging and Shelf Life 40: 101217. https://doi.org/10.1016/j.fpsl.2023.101217.

[37]

Yang, S., C. Chen, W. Li, and S. Liu. 2023. “Study on the Effect of 5/20 and 20/80°C Temperature Cycle Curing Regimes on the Properties of Polyacrylate Dispersion-Modified Cement Mortar.” Construction and Building Materials 399: 132520. https://doi.org/10.1016/j.conbuildmat.2023.132520.

[38]

Yun, Y., W. Liu, Y. Ning, J. Li, and L. Wang. 2024. “Fabricating a High-Loading Smart Film to Monitor Pork Freshness via Adsorption of Anthocyanins on Simultaneously Etched, Anionized and Bleached Wood Cell Wall.” Food Chemistry 460: 140485. https://doi.org/10.1016/j.foodchem.2024.140485.

[39]

Zhou, L., K. Ke, M.-B. Yang, and W. Yang. 2021. “Recent Progress on Chemical Modification of Cellulose for High Mechanical-Performance Poly(Lactic Acid)/Cellulose Composite: A Review.” Composites Communications 23: 100548. https://doi.org/10.1016/j.coco.2020.100548.

[40]

Zhu, Z., M. Yu, R. Ren, H. Wang, and B. Kong. 2024. “Thymol Incorporation Within Chitosan/Polyethylene Oxide Nanofibers by Concurrent Coaxial Electrospinning and In-Situ Crosslinking From Core-Out for Active Antibacterial Packaging.” Carbohydrate Polymers 323: 121381. https://doi.org/10.1016/j.carbpol.2023.121381.

RIGHTS & PERMISSIONS

2025 The Author(s). Food Bioengineering published by John Wiley & Sons Australia, Ltd on behalf of State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/