Synergistic role of prebiotics and probiotics in gut microbiome health: Mechanisms and clinical applications

Tapasya Kumari , Kshirod Kumar Bag , Amit Baran Das , Sankar Chandra Deka

Food Bioengineering ›› 2024, Vol. 3 ›› Issue (4) : 407 -424.

PDF
Food Bioengineering ›› 2024, Vol. 3 ›› Issue (4) : 407 -424. DOI: 10.1002/fbe2.12107
REVIEW ARTICLE

Synergistic role of prebiotics and probiotics in gut microbiome health: Mechanisms and clinical applications

Author information +
History +
PDF

Abstract

Prebiotic and probiotic usage has exploded, with most formulations promoting gastrointestinal and immunological benefits. Prebiotics modulate the gut microbiota, as a result, short-chain fatty acids are released into the bloodstream. Prebiotics have immunomodulatory properties that reduce inflammation while enhancing immune responses and boosting gut health. The potential of probiotics has shown steady expansion in the digestive system, metabolic balance, and vaginal health. Probiotics offer therapeutic and preventative strategies for a range of human diseases. The in vitro studies suggested the delivery matrix might influence their effects through physicochemical interactions with molecular and cellular structures as well as modifications in cellular expression. Dietary fibers and polyphenols both contribute significantly to human health protection and can ferment in the gut microbiota to create butyrate. This comprehensive review aims to highlight the probiotics and prebiotics, and provide evidence to support their use in preventive and therapeutic medicine. It is anticipated that it will help the clinical and preclinical research to look into the effects of inclusion and processing on their activity in different food delivery formulations. There are potential opportunities needed to enhance immunological and digestive health by comprehending and using the interaction between the gut microbiota and the immune system in our diet.

Keywords

clinical evidence / food system / health benefits / in vitro studies / prebiotic / probiotic

Cite this article

Download citation ▾
Tapasya Kumari, Kshirod Kumar Bag, Amit Baran Das, Sankar Chandra Deka. Synergistic role of prebiotics and probiotics in gut microbiome health: Mechanisms and clinical applications. Food Bioengineering, 2024, 3(4): 407-424 DOI:10.1002/fbe2.12107

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abreu, M. T. (2010). Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nature Reviews Immunology, 10(2), 131–144.

[2]

Afzaal, M., Khan, A. U., Saeed, F., Ahmed, A., Ahmad, M. H., Maan, A. A., Tufail, T., Anjum, F. M., & Hussain, S. (2019). Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Science & Nutrition, 7(12), 3931–3940.

[3]

Ahmadifar, E., Moghadam, M. S., Dawood, M., & Hoseinifar, S. H. (2019). Lactobacillus fermentum and/or ferulic acid improved the immune responses, antioxidative defence and resistance against Aeromonas hydrophila in common carp (Cyprinus carpio) fingerlings. Fish & Shellfish Immunology, 94, 916–923.

[4]

Al-Assal, K., Martinez, A. C., Torrinhas, R. S., Cardinelli, C., & Waitzberg, D. (2018). Gut microbiota and obesity. Clinical Nutrition Experimental, 20, 60–64.

[5]

Ang, X. Y., Chung, F. Y., Lee, B. K., Azhar, S. N., Sany, S., Roslan, N. S., Ahmad, N., Yusof, S. M., Abdullah, N., Nik Ab Rahman, N. N., Abdul Wahid, N., Deris, Z. Z., Oon, C. E., Wan Adnan, W. F., & Liong, M. T. (2022). Lactobacilli reduce recurrences of vaginal candidiasis in pregnant women: A randomized, double-blind, placebo-controlled study. Journal of Applied Microbiology, 132(4), 3168–3180.

[6]

Anker, J. F., Naseem, A. F., Mok, H., Schaeffer, A. J., Abdulkadir, S. A., & Thumbikat, P. (2018). Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nature Communications, 9(1), 1591.

[7]

Ashraf, R., & Shah, N. P. (2014). Immune system stimulation by probiotic microorganisms. Critical Reviews in Food Science and Nutrition, 54(7), 938–956.

[8]

Atarashi, K., Suda, W., Luo, C., Kawaguchi, T., Motoo, I., Narushima, S., Kiguchi, Y., Yasuma, K., Watanabe, E., Tanoue, T., Thaiss, C. A., Sato, M., Toyooka, K., Said, H. S., Yamagami, H., Rice, S. A., Gevers, D., Johnson, R. C., Segre, J. A., … Honda, K. (2017). Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science, 358(6361), 359–365.

[9]

Azziz, R., Carmina, E., Chen, Z., Dunaif, A., Laven, J. S., Legro, R. S., Lizneva, D., Natterson-Horowtiz, B., Teede, H. J., & Yildiz, B. O. (2016). Polycystic ovary syndrome. Nature Reviews Disease Primers, 2(1), 16057.

[10]

Bai, J., Zhao, X., Zhang, M., Xia, X., Yang, A., & Chen, H. (2024). Gut microbiota: A target for prebiotics and probiotics in the intervention and therapy of food allergy. Critical Reviews in Food Science and Nutrition, 64(11), 3623–3637.

[11]

Balthazar, C. F., Silva, H. L., Vieira, A. H., Neto, R. P., Cappato, L. P., Coimbra, P. T., Moraes, J., Andrade, M. M., Calado, V. M., Granato, D., Freitas, M. Q., Tavares, M. I., Raices, R. S., Silva, M. C., & Cruz, A. G. (2017). Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream. Food Research International, 91, 38–46.

[12]

Bambace, M. F., Alvarez, M. V., & Moreira, M. R. (2019). Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Research International, 122, 653–660.

[13]

Bansal, S., Mangal, M., Sharma, S. K., & Gupta, R. K. (2016). Non-dairy based probiotics: A healthy treat for intestine. Critical Reviews in Food Science and Nutrition, 56(11), 1856–1867.

[14]

van der Beek, C. M., Canfora, E. E., Kip, A. M., Gorissen, S. H., Olde Damink, S. W., van Eijk, H. M., Holst, J. J., Blaak, E. E., Dejong, C. H., & Lenaerts, K. (2018). The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism: Clinical and Experimental, 87, 25–35.

[15]

Bernini, L. J., Simão, A. N., Alfieri, D. F., Lozovoy, M. A., Mari, N. L., de Souza, C. H., Dichi, I., & Costa, G. N. (2016). Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome. Nutrition, 32(6), 716–719.

[16]

Borges, S., Silva, J., & Teixeira, P. (2014). The role of lactobacilli and probiotics in maintaining vaginal health. Archives of Gynecology and Obstetrics, 289, 479–489.

[17]

Bottari, B., Castellone, V., & Neviani, E. (2021). Probiotics and COVID-19. International Journal of Food Sciences and Nutrition, 72(3), 293–299.

[18]

Bourebaba, Y., Marycz, K., Mularczyk, M., & Bourebaba, L. (2022). Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 153, 113138.

[19]

Boutagy, N. E., McMillan, R. P., Frisard, M. I., & Hulver, M. W. (2016). Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie, 124, 11–20.

[20]

Braga, H. F., & Conti-Silva, A. C. (2015). Papaya nectar formulated with prebiotics: Chemical characterization and sensory acceptability. LWT-Food Science and Technology, 62(1), 854–860.

[21]

Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38), 16050–16055.

[22]

Brunt, E. M., Wong, V. W., Nobili, V., Day, C. P., Sookoian, S., Maher, J. J., Bugianesi, E., Sirlin, C. B., Neuschwander-Tetri, B. A., & Rinella, M. E. (2015). Nonalcoholic fatty liver disease. Nature Reviews Disease Primers, 1(1), 15080.

[23]

Bucław, M. (2016). The use of inulin in poultry feeding: A review. Journal of Animal Physiology and Animal Nutrition, 100(6), 1015–1022.

[24]

Cano Porras, D., Siemonsma, P., Inzelberg, R., Zeilig, G., & Plotnik, M. (2018). Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review. Neurology, 90(22), 1017–1025.

[25]

Castillo-Escandón, V., Ramos-Clamont montfort, G., Islas Rubio, A. R., Marszalek, J. E., Subiría-Cueto, R., & Fernández Michel, S. (2023). Development of healthy synbiotic corn-based snack: Nutritional composition and effect of agave fructan-alginate coating on survival of Lactobacillus acidophilus. Journal of Cereal Science, 114, 103777.

[26]

Ceccarelli, G., Scagnolari, C., Pugliese, F., Mastroianni, C. M., & D’ettorre, G. (2020). Probiotics and COVID-19. The Lancet Gastroenterology & Hepatology, 5(8), 721–722.

[27]

Cervantes-Barragan, L., Chai, J. N., Tianero, M. D., Di Luccia, B., Ahern, P. P., Merriman, J., Cortez, V. S., Caparon, M. G., Donia, M. S., Gilfillan, S., Cella, M., Gordon, J. I., Hsieh, C. S., & Colonna, M. (2017). Lactobacillus reuteri induces gut intraepithelial CD4+ CD8αα+ T cells. Science, 357(6353), 806–810.

[28]

Chambers, E. S., Preston, T., Frost, G., & Morrison, D. J. (2018). Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports, 7, 198–206.

[29]

Cheema, H. A., Shahid, A., Ayyan, M., Mustafa, B., Zahid, A., Fatima, M., Ehsan, M., Athar, F., Duric, N., & Szakmany, T. (2022). Probiotics for the prevention of ventilator-associated pneumonia: An updated systematic review and meta-analysis of randomised controlled trials. Nutrients, 14(8), 1600.

[30]

Cheng, D., Song, J., Xie, M., & Song, D. (2019). The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends in Food Science & Technology, 91, 426–435.

[31]

Coelho, S. R., Lima, Í. A., Martins, M. L., Benevenuto Júnior, A. A., Torres Filho, R. A., Ramos, A. L., & Ramos, E. M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT, 102, 254–259.

[32]

Costa, C. F. F. A., Sampaio-Maia, B., Araujo, R., Nascimento, D. S., Ferreira-Gomes, J., Pestana, M., Azevedo, M. J., & Alencastre, I. S. (2022). Gut microbiome and organ fibrosis. Nutrients, 14(2), 352.

[33]

Costeloe, K., Bowler, U., Brocklehurst, P., Hardy, P., Heal, P., Juszczak, E., King, A., Panton, N., Stacey, F., Whiley, A., Wilks, M., & Millar, M. R. (2016). A randomised controlled trial of the probiotic Bifidobacterium breve BBG-001 in preterm babies to prevent sepsis, necrotising enterocolitis and death: The Probiotics in Preterm infants (PiPS) trial. Health Technology Assessment, 20(66), 1–194.

[34]

Cui, Y., & Qu, X. (2021). Genetic mechanisms of prebiotic carbohydrate metabolism in lactic acid bacteria: Emphasis on Lacticaseibacillus casei and Lacticaseibacillus paracasei as flexible, diverse and outstanding prebiotic carbohydrate starters. Trends in Food Science & Technology, 115, 486–499.

[35]

Cunningham, M., Vinderola, G., Charalampopoulos, D., Lebeer, S., Sanders, M. E., & Grimaldi, R. (2021). Applying probiotics and prebiotics in new delivery formats—Is the clinical evidence transferable? Trends in Food Science & Technology, 112, 495–506.

[36]

Dawson, S. L., Dash, S. R., & Jacka, F. N. (2016). The importance of diet and gut health to the treatment and prevention of mental disorders. International Review of Neurobiology, 131, 325–346.

[37]

Delgado-Fernández, P., Corzo, N., Olano, A., Hernández-Hernández, O., & Moreno, F. J. (2019). Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. International Dairy Journal, 89, 77–85.

[38]

Dewulf, E. M., Cani, P. D., Claus, S. P., Fuentes, S., Puylaert, P. G., Neyrinck, A. M., Bindels, L. B., de Vos, W. M., Gibson, G. R., Thissen, J. P., & Delzenne, N. M. (2013). Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 62(8), 1112–1121.

[39]

Dhopatkar, N., Keeler, J. L., Mutwalli, H., Whelan, K., Treasure, J., & Himmerich, H. (2023). Gastrointestinal symptoms, gut microbiome, probiotics and prebiotics in anorexia nervosa: A review of mechanistic rationale and clinical evidence. Psychoneuroendocrinology, 147, 105959.

[40]

Van Doan, H., Hoseinifar, S. H., Ringø E., Ángeles Esteban, M., Dadar, M., Dawood, M. A., & Faggio, C. (2020). Host-associated probiotics: A key factor in sustainable aquaculture. Reviews in fisheries science & aquaculture, 28(1), 16–42.

[41]

Ebrahimzadeh Leylabadlo, H., Ghotaslou, R., Samadi Kafil, H., Feizabadi, M. M., Moaddab, S. Y., Farajnia, S., Sheykhsaran, E., Sanaie, S., Shanehbandi, D., & Bannazadeh Baghi, H. (2020). Non-alcoholic fatty liver diseases: From role of gut microbiota to microbial-based therapies. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 39, 613–627.

[42]

Fadhilah, J., Zariyah, H., Pramono, A., Purnomo, H. D., Syauqy, A., Afifah, D. N., Fadhillah, F. S., & Purwanti, R. A. (2024). Effect of synbiotic supplementation on liver function, metabolic profile and gut microbiota in non-alcoholic fatty liver disease (NAFLD): A meta-analysis of randomized controlled trials. Clinical Nutrition Open Science, 56, 128–151.

[43]

Fatahi, S., Hosseini, A., Sohouli, M. H., Sayyari, A., Khatami, K., Farsani, Z. F., Amiri, H., Dara, N., de Souza, I. G., & Santos, H. O. (2022). Effects of probiotic supplementation on abdominal pain severity in pediatric patients with irritable bowel syndrome: A systematic review and meta-analysis of randomized clinical trials. World Journal of Pediatrics, 18(5), 320–332.

[44]

Fauser, B. C. J. M., Tarlatzis, B. C., Rebar, R. W., Legro, R. S., Balen, A. H., Lobo, R., Carmina, E., Chang, J., Yildiz, B. O., Laven, J. S., Boivin, J., Petraglia, F., Wijeyeratne, C. N., Norman, R. J., Dunaif, A., Franks, S., Wild, R. A., Dumesic, D., & Barnhart, K. (2012). Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertility and Sterility, 97(1), 28–38.e25.

[45]

Fei, Y., Chen, Z., Han, S., Zhang, S., Zhang, T., Lu, Y., Berglund, B., Xiao, H., Li, L., & Yao, M. (2023). Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Critical Reviews in Food Science and Nutrition, 63(8), 1037–1054.

[46]

Fekete, M., Lehoczki, A., Major, D., Fazekas-Pongor, V., Csípő T., Tarantini, S., Csizmadia, Z., & Varga, J. T. (2024). Exploring the influence of gut-brain axis modulation on cognitive health: A comprehensive review of prebiotics, probiotics, and symbiotics. Nutrients, 16(6), 789.

[47]

FitzGerald, J., Patel, S., Eckenberger, J., Guillemard, E., Veiga, P., Schäfer, F., Walter, J., Claesson, M. J., & Derrien, M. (2022). Improved gut microbiome recovery following drug therapy is linked to abundance and replication of probiotic strains. Gut Microbes, 14(1), 2094664.

[48]

Frakolaki, G., Giannou, V., Kekos, D., & Tzia, C. (2021). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical Reviews in Food Science and Nutrition, 61(9), 1515–1536.

[49]

Frakolaki, G., Kekes, T., Lympaki, F., Giannou, V., & Tzia, C. (2022). Use of encapsulated bifidobacterium animalis subsp. lactis through extrusion or emulsification for the production of probiotic yogurt. Journal of Food Process Engineering, 45(7), e13792.

[50]

Galdeano, C. M., & Perdigón, G. (2006). The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clinical and Vaccine Immunology, 13(2), 219–226.

[51]

Gao, F., Lv, Y. W., Long, J., Chen, J. M., He, J., Ruan, X. Z., & Zhu, H. (2019). Butyrate improves the metabolic disorder and gut microbiome dysbiosis in mice induced by a high-fat diet. Frontiers in Pharmacology, 10, 1040.

[52]

Gevers, D., Kugathasan, S., Denson, L. A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S. J., Yassour, M., Morgan, X. C., Kostic, A. D., Luo, C., González, A., McDonald, D., Haberman, Y., Walters, T., Baker, S., Rosh, J., … Xavier, R. J. (2014). The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host & Microbe, 15(3), 382–392.

[53]

Gomes, A. C., de Sousa, R. G., Botelho, P. B., Gomes, T. L., Prada, P. O., & Mota, J. F. (2017). The additional effects of a probiotic mix on abdominal adiposity and antioxidant status: A double-blind, randomized trial. Obesity, 25(1), 30–38.

[54]

Gonzalez, N. J., Adhikari, K., & Sancho-Madriz, M. F. (2011). Sensory characteristics of peach-flavored yogurt drinks containing prebiotics and synbiotics. LWT-Food Science and Technology, 44(1), 158–163.

[55]

Gonzalez-Garcia, R., McCubbin, T., Navone, L., Stowers, C., Nielsen, L., & Marcellin, E. (2017). Microbial propionic acid production. Fermentation, 3(2), 21.

[56]

González-Herrera, S. M., Rutiaga-Quiñones, O. M., Aguilar, C. N., Ochoa-Martínez, L. A., Contreras-Esquivel, J. C., López, M. G., & Rodríguez-Herrera, R. (2016). Dehydrated apple matrix supplemented with agave fructans, inulin, and oligofructose. LWT, 65, 1059–1065.

[57]

Gunning, M. N., Sir Petermann, T., Crisosto, N., Van Rijn, B. B., De Wilde, M. A., Christ, J. P., Uiterwaal, C. S. P. M., de Jager, W., Eijkemans, M. J., Kunselman, A. R., Legro, R. S., & Fauser, B. C. J. M. (2020). Cardiometabolic health in offspring of women with PCOS compared to healthy controls: A systematic review and individual participant data meta-analysis. Human Reproduction Update, 26(1), 104–118.

[58]

Hamaker, B. R., & Tuncil, Y. E. (2014). A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. Journal of Molecular Biology, 426(23), 3838–3850.

[59]

Hashem, N. M., & Gonzalez-Bulnes, A. (2022). The use of probiotics for management and improvement of reproductive eubiosis and function. Nutrients, 14(4), 902.

[60]

He, M., Wei, W., Zhang, Y., Xiang, Z., Peng, D., Kasimumali, A., & Rong, S. (2024). Gut microbial metabolites SCFAs and chronic kidney disease. Journal of Translational Medicine, 22(1), 172.

[61]

How, Y. H., & Yeo, S. K. (2021). Oral probiotic and its delivery carriers to improve oral health: A review. Microbiology, 167(8), 001076.

[62]

Hu, J., Zhang, L., Lin, W., Tang, W., Chan, F., & Ng, S. C. (2021). Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science & Technology, 108, 187–196.

[63]

Hu, Y., He, J., Zheng, P., Mao, X., Huang, Z., Yan, H., & Chen, D. (2021). Prebiotic inulin as a treatment of obesity related nonalcoholic fatty liver disease through gut microbiota: A critical review. Critical Reviews in Food Science and Nutrition, 63, 1–11.

[64]

Hurtado-Romero, A., Del Toro-Barbosa, M., Garcia-Amezquita, L. E., & García-Cayuela, T. (2020). Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends in Food Science & Technology, 104, 117–131.

[65]

Kaan, I., Tuna, O., Tepe, A., Ergin Zeren, F., & Küçükçetin, A. (2024). Effect of drying temperatures and using prebiotics on the physicochemical and microbiological properties as well as consumer acceptance of probiotic-enriched Lor cheese snacks produced by vacuum drying. International Journal of Gastronomy and Food Science, 36, 100929.

[66]

Karnopp, A. R., Oliveira, K. G., de Andrade, E. F., Postingher, B. M., & Granato, D. (2017). Optimization of an organic yogurt based on sensorial, nutritional, and functional perspectives. Food Chemistry, 233, 401–411.

[67]

Kaur, A., Baldwin, J., Brar, D., Salunke, D. B., & Petrovsky, N. (2022). Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Current Opinion in Chemical Biology, 70, 102172.

[68]

Kei, N., Lauw, S., Wong, V. W., & Cheung, P. C. K. (2024). A mini-review on prebiotic inulin to prevent and treat non-alcoholic fatty liver disease. Food Bioscience, 61, 104679.

[69]

Kumari, T., Das, A. J., Das, A. B., Reddy, C. K., & Deka, S. C. (2024). Prebiotic activity of enzymatically modified pea peel dietary fiber: An in vitro study. Bioactive Carbohydrates and Dietary Fibre, 100452.

[70]

Kurian, S. J., Unnikrishnan, M. K., Miraj, S. S., Bagchi, D., Banerjee, M., Reddy, B. S., Rodrigues, G. S., Manu, M. K., Saravu, K., Mukhopadhyay, C., & Rao, M. (2021). Probiotics in prevention and treatment of COVID-19: Current perspective and future prospects. Archives of Medical Research, 52(6), 582–594.

[71]

Lambertz, J., Weiskirchen, S., Landert, S., & Weiskirchen, R. (2017). Fructose: A dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Frontiers in Immunology, 8, 1159.

[72]

Larsen, N., Vogensen, F. K., Van Den Berg, F. W., Nielsen, D. S., Andreasen, A. S., Pedersen, B. K., Al-Soud, W. A., Sørensen, S. J., Hansen, L. H., & Jakobsen, M. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 5(2), e9085.

[73]

Lasker, S., Rahman, M. M., Parvez, F., Zamila, M., Miah, P., Nahar, K., Kabir, F., Sharmin, S. B., Subhan, N., Ahsan, G. U., & Alam, M. A. (2019). High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Scientific Reports, 9(1), 20026.

[74]

Lee, Y. R., Lee, H. B., Kim, Y., Shin, K. S., & Park, H. Y. (2023). Prebiotic and anti-adipogenic effects of radish green polysaccharide. Microorganisms, 11(7), 1862.

[75]

Li, Y., Tan, Y., Xia, G., & Shuai, J. (2023). Effects of probiotics, prebiotics, and synbiotics on polycystic ovary syndrome: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 63(4), 522–538.

[76]

Liu, R., Zhang, C., Shi, Y., Zhang, F., Li, L., Wang, X., Ling, Y., Fu, H., Dong, W., Shen, J., Reeves, A., Greenberg, A. S., Zhao, L., Peng, Y., & Ding, X. (2017). Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Frontiers in Microbiology, 8, 324.

[77]

Liu, Y., Xu, L., Yang, Z., Wang, D., Li, T., Yang, F., Li, Z., Bai, X., & Wang, Y. (2023). Gut-muscle axis and sepsis-induced myopathy: The potential role of gut microbiota. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 163, 114837.

[78]

López-López, A., Camelo-Castillo, A., Ferrer, M. D., Simon-Soro, Á., & Mira, A. (2017). Health-associated niche inhabitants as oral probiotics: The case of Streptococcus dentisani. Frontiers in Microbiology, 8, 379.

[79]

Lozupone, C. A., Li, M., Campbell, T. B., Flores, S. C., Linderman, D., Gebert, M. J., Knight, R., Fontenot, A. P., & Palmer, B. E. (2013). Alterations in the gut microbiota associated with HIV-1 infection. Cell Host & Microbe, 14(3), 329–339.

[80]

Mariat, D., Firmesse, O., Levenez, F., Guimarăes, V., Sokol, H., Doré J., Corthier, G., & Furet, J. P. (2009). The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology, 9, 123.

[81]

Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.

[82]

McFarlane, C., Kelly, J. T., Conley, M., Johnson, D. W., & Campbell, K. L. (2023). Consumers’ perspectives and experiences of prebiotics and probiotics for gut health in chronic kidney disease. Journal of Renal Nutrition, 33(1), 116–125.

[83]

Misra, S., Pandey, P., & Mishra, H. N. (2021). Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends in Food Science & Technology, 109, 340–351.

[84]

Moludi, J., Maleki, V., Jafari-Vayghyan, H., Vaghef-Mehrabany, E., & Alizadeh, M. (2020). Metabolic endotoxemia and cardiovascular disease: A systematic review about potential roles of prebiotics and probiotics. Clinical and Experimental Pharmacology and Physiology, 47(6), 927–939.

[85]

Moravejolahkami, A. R., Shakibaei, M., Fairley, A. M., & Sharma, M. (2024). Probiotics, prebiotics, and synbiotics in type 1 diabetes mellitus: A systematic review and meta-analysis of clinical trials. Diabetes/Metabolism Research and Reviews, 40(2), e3655.

[86]

Murugesan, S., Nirmalkar, K., Hoyo-Vadillo, C., García-Espitia, M., Ramírez-Sánchez, D., & García-Mena, J. (2018). Gut microbiome production of short-chain fatty acids and obesity in children. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 37, 621–625.

[87]

Nguyen, Q. V., Chong, L. C., Hor, Y. Y., Lew, L. C., Rather, I. A., & Choi, S. B. (2022). Role of probiotics in the management of COVID-19: A computational perspective. Nutrients, 14(2), 274.

[88]

Nikbakht, E., Khalesi, S., Singh, I., Williams, L. T., West, N. P., & Colson, N. (2018). Effect of probiotics and synbiotics on blood glucose: A systematic review and meta-analysis of controlled trials. European Journal of Nutrition, 57, 95–106.

[89]

Oza, A. M., Cook, A. D., Pfisterer, J., Embleton, A., Ledermann, J. A., Pujade-Lauraine, E., Kristensen, G., Carey, M. S., Beale, P., Cervantes, A., Park-Simon, T. W., Rustin, G., Joly, F., Mirza, M. R., Plante, M., Quinn, M., Poveda, A., Jayson, G. C., Stark, D., … Perren, T. J. (2015). Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): Overall survival results of a phase 3 randomised trial. The Lancet Oncology, 16(8), 928–936.

[90]

Panigrahi, P., Parida, S., Nanda, N. C., Satpathy, R., Pradhan, L., Chandel, D. S., Baccaglini, L., Mohapatra, A., Mohapatra, S. S., Misra, P. R., Chaudhry, R., Chen, H. H., Johnson, J. A., Morris, J. G., Paneth, N., & Gewolb, I. H. (2017). A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature, 548(7668), 407–412.

[91]

de Paulo Farias, D., de Araújo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35.

[92]

Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., Guo, J., Le Chatelier, E., Yao, J., Wu, L., Zhou, J., Ni, S., Liu, L., Pons, N., Batto, J. M., Kennedy, S. P., Leonard, P., Yuan, C., Ding, W., … Li, L. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature, 513(7516), 59–64.

[93]

Quigley, E. M. M. (2019). Prebiotics and probiotics in digestive health. Clinical Gastroenterology and Hepatology, 17(2), 333–344.

[94]

Ramezani, A., Massy, Z. A., Meijers, B., Evenepoel, P., Vanholder, R., & Raj, D. S. (2016). Role of the gut microbiome in uremia: A potential therapeutic target. American Journal of Kidney Diseases, 67(3), 483–498.

[95]

Rangel-Torres, B. E., García-Montoya, I. A., Rodríguez-Tadeo, A., & Jiménez-Vega, F. (2024). The symbiosis between Lactobacillus acidophilus and inulin: Metabolic benefits in an obese murine model. Probiotics and Antimicrobial Proteins, 16(1), 26–34.

[96]

Ringø E., Van Doan, H., Lee, S. H., Soltani, M., Hoseinifar, S. H., Harikrishnan, R., & Song, S. K. (2020). Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. Journal of Applied Microbiology, 129(1), 116–136.

[97]

Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food Applications—A narrative review. Food Research International, 137, 109682.

[98]

Sabater, C., Calvete-Torre, I., Villamiel, M., Moreno, F. J., Margolles, A., & Ruiz, L. (2021). Vegetable waste and by-products to feed a healthy gut microbiota: Current evidence, machine learning and computational tools to design novel microbiome-targeted foods. Trends in Food Science & Technology, 118, 399–417.

[99]

Salazar, G., Cornejo-Castillo, F. M., Borrull, E., Díez-Vives, C., Lara, E., Vaqué D., Arrieta, J. M., Duarte, C. M., Gasol, J. M., & Acinas, S. G. (2015). Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Molecular Ecology, 24(22), 5692–5706.

[100]

Salehi, B., Dimitrijević M., Aleksić A., Neffe-Skocińska, K., Zielińska, D., Kołożyn-Krajewska, D., Sharifi-Rad, J., Stojanović-Radić Z., Prabu, S. M., Rodrigues, C. F., & Martins, N. (2021). Human microbiome and homeostasis: Insights into the key role of prebiotics, probiotics, and symbiotics. Critical Reviews in Food Science and Nutrition, 61(9), 1415–1428.

[101]

Shah, B. R., Li, B., Al Sabbah, H., Xu, W., & Mráz, J. (2020). Effects of prebiotic dietary fibers and probiotics on human health: With special focus on recent advancement in their encapsulated formulations. Trends in Food Science & Technology, 102, 178–192.

[102]

Sharma, R., Rashidinejad, A., & Jafari, S. M. (2022). Application of spray dried encapsulated probiotics in functional food formulations. Food and Bioprocess Technology, 15(10), 2135–2154.

[103]

Shirakashi, M., Maruya, M., Hirota, K., Tsuruyama, T., Matsuo, T., Watanabe, R., Murata, K., Tanaka, M., Ito, H., Yoshifuji, H., Ohmura, K., Elewaut, D., Sakaguchi, S., Fagarasan, S., Mimori, T., & Hashimoto, M. (2022). Effect of impaired T cell receptor signaling on the gut microbiota in a mouse model of systemic autoimmunity. Arthritis & Rheumatology, 74(4), 641–653.

[104]

Shorakae, S., Ranasinha, S., Abell, S., Lambert, G., Lambert, E., de Courten, B., & Teede, H. (2018). Inter-related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS. Clinical Endocrinology, 89(5), 628–633.

[105]

daSilva, T. F., Casarotti, S. N., de Oliveira, G. L., & Penna, A. L. B. (2021). The impact of probiotics, prebiotics, and synbiotics on the biochemical, clinical, and immunological markers, as well as on the gut microbiota of obese hosts. Critical Reviews in Food Science and Nutrition, 61(2), 337–355.

[106]

daSilva, T. F., & Conti-Silva, A. C. (2018). Potentiality of gluten-free chocolate cookies with added inulin/oligofructose: Chemical, physical and sensory characterization. LWT, 90, 172–179.

[107]

Simpson, H. L., & Campbell, B. J. (2015). Review article: Dietary fibre-microbiota interactions. Alimentary Pharmacology & Therapeutics, 42(2), 158–179.

[108]

Sinha, A., Gupta, S. S., Chellani, H., Maliye, C., Kumari, V., Arya, S., Garg, B. S., Gaur, S. D., Gaind, R., Deotale, V., Taywade, M., Prasad, M. S., Thavraj, V., Mukherjee, A., & Roy, M. (2015). Role of probiotics VSL# 3 in prevention of suspected sepsis in low birthweight infants in India: A randomised controlled trial. BMJ Open, 5(7), 006564.

[109]

Sivaprakasam, S., Gurav, A., Paschall, A. V., Coe, G. L., Chaudhary, K., Cai, Y., Kolhe, R., Martin, P., Browning, D., Huang, L., Shi, H., Sifuentes, H., Vijay-Kumar, M., Thompson, S. A., Munn, D. H., Mellor, A., McGaha, T. L., Shiao, P., Cutler, C. W., … Singh, N. (2016). An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis, 5(6), e238–e238.

[110]

Slykerman, R. F., Hood, F., Wickens, K., Thompson, J. M., Barthow, C., Murphy, R., Rowden, J., Stone, P., Crane, J., Stanley, T., Abels, P., Purdie, G., Maude, R., & Mitchell, E. A., Probiotic in Pregnancy Study Group. (2017). Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: A randomised double-blind placebo-controlled trial. EBioMedicine, 24, 159–165.

[111]

Soderborg, T. K., Clark, S. E., Mulligan, C. E., Janssen, R. C., Babcock, L., Ir, D., Young, B., Krebs, N., Lemas, D. J., Johnson, L. K., Weir, T., Lenz, L. L., Frank, D. N., Hernandez, T. L., Kuhn, K. A., D’Alessandro, A., Barbour, L. A., El Kasmi, K. C., & Friedman, J. E. (2018). The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nature Communications, 9(1), 4462.

[112]

Speranza, B., Campaniello, D., Monacis, N., Bevilacqua, A., Sinigaglia, M., & Corbo, M. R. (2018). Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics. Food Microbiology, 72, 16–22.

[113]

Stegmayer, M. Á., Sirini, N., Frizzo, L. S., Fernández-López, J., Álvarez, J. Á. P., Rosmini, M. R., & Soto, L. P. (2024). Enrichment of foods with prebiotics, Strategies to improve the quality of foods (pp. 171–201). Academic Press.

[114]

Sujino, T., London, M., Hoytema van Konijnenburg, D. P., Rendon, T., Buch, T., Silva, H. M., Lafaille, J. J., Reis, B. S., & Mucida, D. (2016). Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science, 352(6293), 1581–1586.

[115]

Teede, H., Deeks, A., & Moran, L. (2010). Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Medicine, 8(1), 41.

[116]

Teferra, T. F. (2021). Possible actions of inulin as prebiotic polysaccharide: A review. Food Frontiers, 2(4), 407–416.

[117]

Viteri-Echeverría, J., Andrés, A., Calvo-Lerma, J., Heredia, A., García-Hernández, J., & Asensio-Grau, A. (2024). In vitro screening of the impact of dietary prebiotic components, probiotic strains, and their symbiotic combinations on colonic microbiota in children with cystic fibrosis. Food & Function, 15, 6512–6522.

[118]

Wagner, S., Merkling, T., Metzger, M., Koppe, L., Laville, M., Boutron-Ruault, M. C., Frimat, L., Combe, C., Massy, Z. A., Stengel, B., & Fouque, D. (2022). Probiotic intake and inflammation in patients with chronic kidney disease: An analysis of the CKD-REIN cohort. Frontiers in Nutrition, 9, 772596.

[119]

Wan, L. Y. M., Chen, Z. J., Shah, N. P., & El-Nezami, H. (2016). Modulation of intestinal epithelial defense responses by probiotic bacteria. Critical Reviews in Food Science and Nutrition, 56(16), 2628–2641.

[120]

Westfall, S., Lomis, N., & Prakash, S. (2018). Longevity extension in Drosophila through gut-brain communication. Scientific Reports, 8(1), 8362.

[121]

Whelan, K., & Staudacher, H. (2022). Low FODMAP diet in irritable bowel syndrome: A review of recent clinical trials and meta-analyses. Current Opinion in Clinical Nutrition and Metabolic Care, 25(5), 341–347.

[122]

Wieland, A., Frank, D. N., Harnke, B., & Bambha, K. (2015). Systematic review: Microbial dysbiosis and nonalcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics, 42(9), 1051–1063.

[123]

Wilck, N., Matus, M. G., Kearney, S. M., Olesen, S. W., Forslund, K., Bartolomaeus, H., Haase, S., Mähler, A., Balogh, A., Markó L., Vvedenskaya, O., Kleiner, F. H., Tsvetkov, D., Klug, L., Costea, P. I., Sunagawa, S., Maier, L., Rakova, N., Schatz, V., … Müller, D. N. (2017). Salt-responsive gut commensal modulates TH17 axis and disease. Nature, 551(7682), 585–589.

[124]

Xu, C., Ban, Q., Wang, W., Hou, J., & Jiang, Z. (2022). Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. Journal of Controlled Release, 349, 184–205.

[125]

Xue, J., Li, X., Liu, P., Li, K., Sha, L., Yang, X., Zhu, L., Wang, Z., Dong, Y., Zhang, L., Lei, H., Zhang, X., Dong, X., & Wang, H. (2019). Inulin and metformin ameliorate polycystic ovary syndrome via anti-inflammation and modulating gut microbiota in mice. Endocrine Journal, 66(10), 859–870.

[126]

Xue, L., He, J., Gao, N., Lu, X., Li, M., Wu, X., Liu, Z., Jin, Y., Liu, J., Xu, J., & Geng, Y. (2017). Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Scientific Reports, 7(1), 45176.

[127]

Yang, H., Xiong, J., He, L., Li, C., Qiao, S., & Zeng, X. (2024). Stress tolerance, safety, and probiotic traits of cholesterol-decreasing Bifidobacterium BLH1 isolated from guizhou red sour soup, a traditional Chinese fermented food. LWT, 192, 115696.

[128]

Yang, J., Kuang, H., Li, N., Hamdy, A. M., & Song, J. (2022). The modulation and mechanism of probiotic-derived polysaccharide capsules on the immune response in allergic diseases. Critical Reviews in Food Science and Nutrition, 63, 1–13.

[129]

Younossi, Z. M. (2019). Non-alcoholic fatty liver disease—A global public health perspective. Journal of Hepatology, 70(3), 531–544.

[130]

Zeng, B., Lai, Z., Sun, L., Zhang, Z., Yang, J., Li, Z., Lin, J., & Zhang, Z. (2019). Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): A pilot study. Research in Microbiology, 170(1), 43–52.

[131]

Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., Fu, H., Xue, X., Lu, C., Ma, J., Yu, L., Xu, C., Ren, Z., Xu, Y., Xu, S., Shen, H., Zhu, X., Shi, Y., Shen, Q., … Zhang, C. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156.

[132]

Zheng, D. W., Li, R. Q., An, J. X., Xie, T. Q., Han, Z. Y., Xu, R., Fang, Y., & Zhang, X. Z. (2020). Prebiotics-encapsulated probiotic spores regulate gut microbiota and suppress colon cancer. Advanced Materials, 32(45), 2004529.

[133]

Zhu, G., Ma, F., Wang, G., Wang, Y., Zhao, J., Zhang, H., & Chen, W. (2018). Bifidobacteria attenuate the development of metabolic disorders, with inter-and intra-species differences. Food & Function, 9(6), 3509–3522.

RIGHTS & PERMISSIONS

2024 The Author(s). Food Bioengineering published by John Wiley & Sons Australia, Ltd. on behalf of State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology.

AI Summary AI Mindmap
PDF

1227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/