Advancements in metal oxide bio-nanocomposites for sustainable food packaging: Fabrication, applications, and future prospectives

Jayaprakash Nandhini , Michael Bellarmin , Senthil Siva Prakash , Devarajan Sowmya Sri , Elumalai Karthikeyan

Food Bioengineering ›› 2024, Vol. 3 ›› Issue (4) : 438 -463.

PDF
Food Bioengineering ›› 2024, Vol. 3 ›› Issue (4) : 438 -463. DOI: 10.1002/fbe2.12106
REVIEW ARTICLE

Advancements in metal oxide bio-nanocomposites for sustainable food packaging: Fabrication, applications, and future prospectives

Author information +
History +
PDF

Abstract

The research on metal oxide bio-nanocomposites for sustainable food packaging has witnessed significant advancements, offering a promising alternative to traditional food packaging materials. This review briefly describes their fabrication techniques, applications, superiority over conventional packaging, challenges, limitations, and potential trends. These new materials are derived by incorporating metal oxide nanoparticles into the biopolymers and show better properties, such as better antimicrobial properties, which are vital in food packaging. The advantages of using metal oxide bio-nanocomposites over typical food packaging films include enhanced mechanical properties, better moisture and oxygen resistance, bacterial resistance, and light protection. These versatile materials not only serve the purpose of properly preserving the quality and possibly even the wholesomeness of packed food products, but they are also environmentally friendly. Moreover, the review presents current developments and areas of use of metal oxide bio-nanocomposites in food packaging and it also proposes future developments to meet the modern challenge of the food industry in the development of advanced packaging technologies.

Keywords

antimicrobial and eco-friendly / bio-nanocomposites / food packaging / metal oxide nanoparticles

Cite this article

Download citation ▾
Jayaprakash Nandhini, Michael Bellarmin, Senthil Siva Prakash, Devarajan Sowmya Sri, Elumalai Karthikeyan. Advancements in metal oxide bio-nanocomposites for sustainable food packaging: Fabrication, applications, and future prospectives. Food Bioengineering, 2024, 3(4): 438-463 DOI:10.1002/fbe2.12106

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbasi, R., Shineh, G., Mobaraki, M., Doughty, S., & Tayebi, L. (2023). Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. Journal of Nanoparticle Research: An Interdisciplinary Forum for Nanoscale Science and Technology, 25(3), 43.

[2]

Abdelrazek, E. M., Elzayat, A. M., Elbana, A. A., & Awad, W. M. (2023). Physical properties of copper oxide nano-composite incorporated PVP/chitosan blend matrix by casting method. Polymer Bulletin, 81, 7467–7479.

[3]

Abdullah, J. A. A., Yemişken, E., Guerrero, A., & Romero, A. (2023). Marine collagen-based antibacterial film reinforced with graphene and iron oxide nanoparticles. International Journal of Molecular Sciences, 24(1), 648.

[4]

A.G. Soares Silva, F., Bento de Carvalho, T., Dourado, F., Gama, M., Teixeira, P., & Poças, F. (2023). Performance of bacterial nanocellulose packaging film functionalised in situ with zinc oxide: Migration onto chicken skin and antimicrobial activity. Food Packaging and Shelf Life, 39, 101140.

[5]

Ahmed, J., Mulla, M., Arfat, Y. A., & Thai T, L. A. (2017). Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocolloids, 71, 141–148.

[6]

Alhanish, A., & Ghalia, M. A. (2022). Cellulose-based bionanocomposites for food packaging applications. In M. J. Ahamed & A. M. Holavo (Eds.), Bionanocomposites for food packaging applications (pp. 257–276). Academic Press.

[7]

Ali, H., Tiama, T. M., & Ismail, A. M. (2021). New and efficient NiO/chitosan/polyvinyl alcohol nanocomposites as antibacterial and dye adsorptive films. International Journal of Biological Macromolecules, 186, 278–288.

[8]

Alizadeh Sani, M., Maleki, M., Eghbaljoo-Gharehgheshlaghi, H., Khezerlou, A., Mohammadian, E., Liu, Q., & Jafari, S. M. (2022). Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Advances in Colloid and Interface Science, 300, 102593.

[9]

Al-Tayyar, N. A., Youssef, A. M., & Al-Hindi, R. R. (2020). Antimicrobial packaging efficiency of ZnO-SiO2 nanocomposites infused into PVA/CS film for enhancing the shelf life of food products. Food Packaging and Shelf Life, 25, 100523.

[10]

Alves, Z., Ferreira, N. M., Mendo, S., Ferreira, P., & Nunes, C. (2021). Design of alginate-based bionanocomposites with electrical conductivity for active food packaging. International Journal of Molecular Sciences, 22(18), 9943.

[11]

Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., Roufegarinejad, L., & Hamishehkar, H. (2019). Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food and Bioprocess Technology, 12(7), 1205–1219.

[12]

Andrew, J. J., & Dhakal, H. N. (2022). Sustainable biobased composites for advanced applications: Recent trends and future opportunities—A critical review. Composites Part C: Open Access, 7, 100220.

[13]

Antoniewski, M. N., & Barringer, S. A. (2010). Meat shelf-life and extension using collagen/gelatin coatings: A review. Critical Reviews in Food Science and Nutrition, 50(7).

[14]

Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Caballero, A. H., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 13(19), 3256.

[15]

Ardebilchi Marand, S., Almasi, H., & Ardebilchi Marand, N. (2021). Chitosan-based nanocomposite films incorporated with NiO nanoparticles: Physicochemical, photocatalytic and antimicrobial properties. International Journal of Biological Macromolecules, 190, 667–678.

[16]

Arias, A., Feijoo, G., & Moreira, M. T. (2022). Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery. Innovative Food Science & Emerging Technologies, 77, 102974.

[17]

Asadpour, S., Raeisi vanani, A., Kooravand, M., & Asfaram, A. (2022). A review on zinc oxide/poly(vinyl alcohol) nanocomposites: Synthesis, characterization and applications. Journal of Cleaner Production, 362, 132297.

[18]

Ashfaq, A., Khursheed, N., Fatima, S., Anjum, Z., & Younis, K. (2022). Application of nanotechnology in food packaging: Pros and cons. Journal of Agriculture and Food Research, 7, 100270.

[19]

Azeredo, H. M. C., Otoni, C. G., & Mattoso, L. H. C. (2022). Edible films and coatings—Not just packaging materials. Current Research in Food Science, 5, 1590–1595.

[20]

Aziz, T., Farid, A., Haq, F., Kiran, M., Ullah, A., Zhang, K., Li, C., Ghazanfar, S., Sun, H., Ullah, R., Ali, A., Muzammal, M., Shah, M., Akhtar, N., Selim, S., Hagagy, N., Samy, M., & Al Jaouni, S. K. (2022). A review on the modification of cellulose and its applications. Polymers, 14(15), 3206.

[21]

Azizi-Lalabadi, M., Ehsani, A., Ghanbarzadeh, B., & Divband, B. (2020). Polyvinyl alcohol/gelatin nanocomposite containing ZnO, TiO2 or ZnO/TiO2 nanoparticles doped on 4A zeolite: Microbial and sensory qualities of packaged white shrimp during refrigeration. International Journal of Food Microbiology, 312, 108375.

[22]

Azizi, S., Ahmad, M., Ibrahim, N., Hussein, M., & Namvar, F. (2014). Cellulose nanocrystals/ZnO as a bifunctional reinforcing nanocomposite for poly(vinyl alcohol)/chitosan blend films: Fabrication, characterization and properties. International Journal of Molecular Sciences, 15(6), 11040–11053.

[23]

Bahrami, A., Rezaei Mokarram, R., Sowti Khiabani, M., Ghanbarzadeh, B., & Salehi, R. (2019). Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. International Journal of Biological Macromolecules, 129, 1103–1112.

[24]

Bai, C., & Tang, M. (2020). Toxicological study of metal and metal oxide nanoparticles in zebrafish. Journal of Applied Toxicology, 40(1), 37–63.

[25]

Barabaszová K. C., Holešová S., Šulcová K., Hundáková M., & Thomasová B. (2019). Effects of ultrasound on zinc oxide/vermiculite/chlorhexidine nanocomposite preparation and their antibacterial activity. Nanomaterials, 9(9), 1309.

[26]

Baranwal, J., Barse, B., Fais, A., Delogu, G. L., & Kumar, A. (2022). Biopolymer: A sustainable material for food and medical applications. Polymers, 14(5), 983.

[27]

Basavegowda, N., & Baek, K. H. (2021). Advances in functional biopolymer-based nanocomposites for active food packaging applications. Polymers, 13(23), 4198.

[28]

Berwal, P., Sihag, S., Rani, S., Kumar, A., Jatrana, A., Singh, P., Dahiya, R., Kumar, A., Dhillon, A., Sanger, A., Kumar, M., Sharma, A., & Kumar, V. (2023). Hybrid metal oxide nanocomposites for gas-sensing applications: A review. Industrial and Engineering Chemistry Research, 62(37), 14835–14852.

[29]

Bhati, V. S., Hojamberdiev, M., & Kumar, M. (2020). Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Reports, 6, 46–62.

[30]

Bhutto, A. A., Baig, J. A., uddin, S., Kazi, T. G., Sierra-Alvarez, R., Akhtar, K., Perveen, S., Afridi, H. I., Ali, H. E., Hol, A., & Samejo, S. (2023). Biosynthesis of aluminium oxide nanobiocomposite and its application for the removal of toxic metals from drinking water. Ceramics International, 49(9), 14615–14623.

[31]

Biswas, R., Alam, M., Sarkar, A., Haque, M. I., Hasan, M. M., & Hoque, M. (2022). Application of nanotechnology in food: Processing, preservation, packaging and safety assessment. Heliyon, 8(11), 11795.

[32]

Brust, H., Orzechowski, S., & Fettke, J. (2020). Starch and glycogen analyses: Methods and techniques. Biomolecules, 10(7), 1020.

[33]

Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., & Giménez, E. (2006). Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromolecular Symposia, 233, 191–197.

[34]

Cai, M., Zhong, H., Ma, Q., Yang, K., & Sun, P. (2022). Physicochemical and microbial quality of Agaricus bisporus packaged in nano-SiO2/TiO2 loaded polyvinyl alcohol films. Food Control, 131, 108452.

[35]

Cen, C., Wang, F., Wang, Y., Li, H., Fu, L., Li, Y., Chen, J., & Wang, Y. (2023). Design and characterization of an antibacterial film composited by hydroxyethyl cellulose (HEC), carboxymethyl chitosan (CMCS), and nano ZnO for food packaging. International Journal of Biological Macromolecules, 231, 123203.

[36]

Chen, F., Chang, X., Xu, H., Fu, X., Ding, S., & Wang, R. (2023). Gellan gum-based functional films integrated with bacterial cellulose and nano-TiO2/CuO improve the shelf life of fresh-cut pepper. Food Packaging and Shelf Life, 38, 101103.

[37]

Ching, L. W., Keesan, F. W., & Muhamad, I. I. (2022). Optimization of ZnO/GO nanocomposite-loaded polylactic acid active films using response surface methodology. Journal of King Saud University - Science, 34(3), 101835.

[38]

Cinelli, P., Coltelli, M. B., Mallegni, N., Morganti, P., & Lazzeri, A. (2017). Degradability and sustainability of nanocomposites based on polylactic acid and chitin nano fibrils. Chemical Engineering Transactions, 60, 25–30. https://doi.org/10.3303/CET1760020

[39]

Cruz, R., Krauter, V., Krauter, S., Agriopoulou, S., Weinrich, R., Herbes, C., Scholten, P., Uysal-Unalan, I., Sogut, E., Kopacic, S., Lahti, J., Rutkaite, R., & Varzakas, T. (2022). Bioplastics for food packaging: Environmental impact, trends and regulatory aspects. Foods, 11(19), 3087.

[40]

Cui, S., Yang, L., Wang, J., & Wang, X. (2016). Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage. Sensors and Actuators, B: Chemical, 233, 337–346.

[41]

Darwish, M., Mostafa, M. H., & Al-Harbi, L. M. (2022). Polymeric nanocomposites for environmental and industrial applications. International Journal of Molecular Sciences, 23(3), 1023.

[42]

Dash, K. K., Deka, P., Bangar, S. P., Chaudhary, V., Trif, M., & Rusu, A. (2022). Applications of inorganic nanoparticles in food packaging: A comprehensive review. Polymers, 14(3), 521.

[43]

Dave, P., & Sirach, R. (2022). Chapter 2. Nanocomposites: Introduction, Synthesis and Applications.

[44]

Desai, N., Rana, D., Salave, S., Gupta, R., Patel, P., Karunakaran, B., Sharma, A., Giri, J., Benival, D., & Kommineni, N. (2023). Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics, 15(4), 1313.

[45]

Devaraji, M., Thanikachalam, P. V., & Elumalai, K. (2024). The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review. In Biotechnology notes (Vol. 5, pp. 80–99). KeAi Communications Co.

[46]

Duan, N., Li, Q., Meng, X., Wang, Z., & Wu, S. (2021). Preparation and characterization of k-carrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation. Food Chemistry, 364, 130441.

[47]

Egbuna, C., Parmar, V. K., Jeevanandam, J., Ezzat, S. M., Patrick-Iwuanyanwu, K. C., Adetunji, C. O., Khan, J., Onyeike, E. N., Uche, C. Z., Akram, M., Ibrahim, M. S., El Mahdy, N. M., Awuchi, C. G., Saravanan, K., Tijjani, H., Odoh, U. E., Messaoudi, M., Ifemeje, J. C., Olisah, M. C., … Ibeabuchi, C. G. (2021). Toxicity of nanoparticles in biomedical application: nanotoxicology. Journal of Toxicology, 2021, 1–21.

[48]

Ejaz, M., Arfat, Y. A., Mulla, M., & Ahmed, J. (2018). Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packaging and Shelf Life, 15, 113–121.

[49]

Elumalai, K., Srinivasan, S., & Shanmugam, A. (2024). Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology, 5, 109–122.

[50]

Emam, H. E., Ahmed, H. B., & Abdelhameed, R. M. (2021). Melt intercalation technique for synthesis of hetero-metallic@chitin bio-composite as recyclable catalyst for prothiofos hydrolysis. Carbohydrate Polymers, 266, 118163.

[51]

Emamhadi, M. A., Sarafraz, M., Akbari, M., Thai, V. N., Fakhri, Y., Linh, N. T., & Mousavi Khaneghah, A. (2020). Nanomaterials for food packaging applications: A systematic review. Food and Chemical Toxicology, 146, 111825.

[52]

Enescu, D., Dehelean, A., Gonçalves, C., Cerqueira, M. A., Magdas, D. A., Fucinos, P., & Pastrana, L. M. (2020). Evaluation of the specific migration according to EU standards of titanium from Chitosan/Metal complexes films containing TiO2 particles into different food simulants. A comparative study of the nano-sized vs micro-sized particles. Food Packaging and Shelf Life, 26, 100579.

[53]

Esen, A. (1986). Separation of alcohol-soluble proteins (Zeins) from maize into three fractions by differential solubility. Plant Physiology, 80(3), 623–627.

[54]

Espitia, P. J. P., Otoni, C. G., & Soares, N. F. F. (2016). Zinc oxide nanoparticles for food packaging applications. In J. M. Lagaron, M. J. Ocio, & A. López-Rubio (Eds.), Antimicrobial food packaging (pp. 425–440). Academic Press.

[55]

Fadeyibi, A., Osunde, Z. D., Agidi, G., Idah, P. A., & Egwim, E. C. (2016). Development and optimisation of cassava starch-zinc-nanocomposite film for potential application in food packaging. Journal of Food Processing & Technology, 7(6).

[56]

Fawaz, J., & Mittal, V. (2014). Synthesis of polymer nanocomposites: Review of various techniques. In V. Mittal (Ed.), Synthesis techniques for polymer nanocomposites (pp. 1–22). Wiley-VCH.

[57]

Flórez, M., Cazón, P., & Vázquez, M. (2023). Selected biopolymers’ processing and their applications: A review. Polymers, 15(3), 641.

[58]

Freitas, C. M. P., Coimbra, J. S., Souza, V. G., & Sousa, R. C. S. (2021). Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings, 11(8), 922.

[59]

Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019). Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1(1), 2–30.

[60]

Gamage, A., Thiviya, P., Mani, S., Ponnusamy, P. G., Manamperi, A., Evon, P., Merah, O., & Madhujith, T. (2022). Environmental properties and applications of biodegradable starch-based nanocomposites. Polymers, 14(21), 4578.

[61]

Garcia, C. V., Shin, G. H., & Kim, J. T. (2018). Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends in Food Science & Technology, 82, 21–31.

[62]

Gasti, T., Dixit, S., Hiremani, V. D., Chougale, R. B., Masti, S. P., Vootla, S. K., & Mudigoudra, B. S. (2022). Chitosan/pullulan based films incorporated with clove essential oil loaded chitosan-ZnO hybrid nanoparticles for active food packaging. Carbohydrate Polymers, 277, 118866.

[63]

Ghazzy, A., Naik, R. R., & Shakya, A. K. (2023). Metal–polymer nanocomposites: A promising approach to antibacterial materials. Polymers, 15(9), 2167.

[64]

Góral, D., Marczuk, A., Góral-Kowalczyk, M., Koval, I., & Andrejko, D. (2023). Application of iron nanoparticle-based materials in the food industry. Materials, 16(2), 780.

[65]

Gromiha, M. M., & Selvaraj, S. (2004). Inter-residue interactions in protein folding and stability. Progress in Biophysics and Molecular Biology, 86(2), 235–277.

[66]

Gudadhe, J. A., Yadav, A., Gade, A., Marcato, P. D., Durán, N., & Rai, M. (2014). Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits. IET Nanobiotechnology, 8(4), 190–195.

[67]

Gudkov, S. V., Burmistrov, D. E., Smirnova, V. V., Semenova, A. A., & Lisitsyn, A. B. (2022). A mini review of antibacterial properties of Al2O3 nanoparticles. Nanomaterials, 12(15), 2635.

[68]

Gunaki, M. N., Masti, S. P., D’souza, O. J., Eelager, M. P., Kurabetta, L. K., Chougale, R. B., Kadapure, A. J., & Praveen Kumar, S. K. (2024). Fabrication of CuO nanoparticles embedded novel chitosan/hydroxypropyl cellulose bio-nanocomposites for active packaging of jamun fruit. Food Hydrocolloids, 152, 109937.

[69]

Gupta, R. K., Gawad, F. A., Ali, E. A., Karunanithi, S., Yugiani, P., & Srivastav, P. P. (2024). Nanotechnology: Current applications and future scope in food packaging systems. Measurement: Food, 13, 100131.

[70]

Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites, Part A: Applied Science and Manufacturing, 77, 1–25.

[71]

Gvozdenko, A. A., Siddiqui, S. A., Blinov, A. V., Golik, A. B., Nagdalian, A. A., Maglakelidze, D. G., Statsenko, E. N., Pirogov, M. A., Blinova, A. A., Sizonenko, M. N., Simonov, A. N., Zhukov, R. B., Kolesnikov, R. O., & Ibrahim, S. A. (2022). Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. Scientific Reports, 12(1), 12843.

[72]

Hafeez, M. (2022). Recent progress and overview of nanocomposites. In A. K. Mishra & J. P. Tiwari (Eds.), Nanocomposite materials for biomedical and energy storage applications. IntechOpen.

[73]

Hasanin, M. S., & Youssef, A. M. (2022). Ecofriendly bioactive film doped CuO nanoparticles based biopolymers and reinforced by enzymatically modified nanocellulose fibers for active packaging applications. Food Packaging and Shelf Life, 34, 100979.

[74]

Hettiarachchi, S. S., Thakshila Kumari, W. M., & Amarakoon, R. (2023). Extraction of xyloglucan polymer from Tamarind (Tamarindus indica) seeds. European Journal of Advanced Chemistry Research, 4(1), 15–21.

[75]

Honarvar, Z., Hadian, Z., & Mashayekh, M. (2016). Nanocomposites in food packaging applications and their risk assessment for health. Electronic Physician, 8(6), 2531–2538.

[76]

Hoogesteijn Von Reitzenstein, N., Bi, X., Yang, Y., Hristovski, K., & Westerhoff, P. (2016). Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats. Journal of Applied Polymer Science, 133(33), 43811.

[77]

Ifmalinda, I., Kurnia, S. A., & Cherie, D. (2023). Characteristics of edible film from corn starch (Zea mays L.) with additional glycerol and variations of zinc oxide (ZnO) nanoparticles. Journal of Applied Agricultural Science and Technology, 7(3), 272–285.

[78]

Indumathi, M. P., Saral Sarojini, K., & Rajarajeswari, G. R. (2019). Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. International Journal of Biological Macromolecules, 132, 1112–1120.

[79]

Jafarzadeh, S., Mohammadi Nafchi, A., Salehabadi, A., Oladzad-abbasabadi, N., & Jafari, S. M. (2021). Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291, 102405.

[80]

Jamróz, E., Kulawik, P., & Kopel, P. (2019). The effect of nanofillers on the functional properties of biopolymer-based films: A review. Polymers, 11(4), 675.

[81]

Javan, A. J., Baktash, S., Yancheshmeh, B. S., Parsaeimehr, M., Madanchi, H., Abdolshahi, A., Marvdashti, L. M., & Shriatifar, N. (2024). Effect of Vicia villosa protein isolate-based edible coating incorporated with ZnO nanoparticles on the shelf-life of chicken breast meat during cold storage. Food Hydrocolloids for Health, 5, 100176.

[82]

Jayakumar, A., Radoor, S., Kim, J. T., Rhim, J. W., Parameswaranpillai, J., Nandi, D., Srisuk, R., & Siengchin, S. (2022). Titanium dioxide nanoparticles and elderberry extract incorporated starch based polyvinyl alcohol films as active and intelligent food packaging wraps. Food Packaging and Shelf Life, 34, 100967.

[83]

Jayakumar, A., Radoor, S., Kim, J. T., Rhim, J. W., Parameswaranpillai, J., & Siengchin, S. (2022). Lignin-based bionanocomposites for food packaging applications. In M. J. Ahamed & A. M. Holavo (Eds.), Bionanocomposites for food packaging applications (pp. 497–514). Academic Press.

[84]

Jayarathna, S., Andersson, M., & Andersson, R. (2022). Recent advances in starch-based blends and composites for bioplastics applications. Polymers, 14(21), 4557.

[85]

Jiménez, A., & Ruseckaite, R. A. (2012). Nano-biocomposites for food packaging. In A. Jiménez, M. V. Peltzer, & R. Ruseckaite (Eds.), Food packaging: Nanotechnology and the food chain (pp. 257–274).

[86]

Karunakar, K. K., Cheriyan, B. V., Krithikeshvaran, R., Gnanisha, M., & Abinavi, B. (2024). Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles. In Biotechnology Notes (Vol. 5, pp. 64–79). KeAi Communications Co.

[87]

Kaidar, B., Smagulova, G., Imash, A., Keneshbekova, A., Ilyanov, A., & Mansurov, Z. (2023). Pitch/metal oxide composite fibers via electrospinning for environmental applications. Technologies, 11(6), 156.

[88]

Kamal, A., Ashmawy, M., Shanmugan, S., Algazzar, A. M., & Elsheikh, A. H. (2022). Fabrication techniques of polymeric nanocomposites: A comprehensive review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(9), 2841–2864.

[89]

Kaur, A., Bajaj, B., Kaushik, A., Saini, A., & Sud, D. (2022). A review on template assisted synthesis of multi-functional metal oxide nanostructures: Status and prospects. Materials Science and Engineering: B, 286, 116005.

[90]

Kausar, A. (2021). Polymeric nanocomposite via electrospinning: Assessment of morphology, physical properties and applications. Journal of Plastic Film and Sheeting, 37(1), 3–27.

[91]

Kedir, W. M., Deresa, E. M., & Diriba, T. F. (2022). Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites. Heliyon, 8(9), 10654.

[92]

Khan, O. A., Zaidi, S., Islam, R. U., Naseem, S., & Junaid, P. M. (2023). Enhanced shelf-life of peach fruit in alginate based edible coating loaded with TiO2 nanoparticles. Progress in Organic Coatings, 182, 107688.

[93]

Khan, S., Shu, Y., Li, C., Liang, T., & Zhang, Z. (2023). The influence of forsythia essential oil and ZnO nanoparticles on the physicochemical properties of ASKG-based film and its effect on the preservation of meat quality. Food Bioscience, 56, 103239.

[94]

Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., Ullah, M. F., Bibi, H., Bafakeeh, O. T., Khedher, N. B., Eldin, S. M., Fadhl, B. M., & Khan, M. I. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386.

[95]

Khodaei, S. M., Gholami-Ahangaran, M., Karimi Sani, I., Esfandiari, Z., & Eghbaljoo, H. (2023). Application of intelligent packaging for meat products: A systematic review. Veterinary Medicine and Science, 9(1), 481–493.

[96]

Khojah, E., Sami, R., Helal, M., Elhakem, A., Benajiba, N., Alharbi, M., & Alkaltham, M. S. (2021). Effect of coatings using titanium dioxide nanoparticles and chitosan films on oxidation during storage on white button mushroom. Crystals, 11(6), 603.

[97]

Kumar, A., Kothari, A., Kumar, P., Singh, A., Tripathi, K., Gairolla, J., Pai, M., & Ji Omar, B. (2023). Introduction to Alginate: Biocompatible, Biodegradable, Antimicrobial Nature and Various Applications.

[98]

Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science (Oxford), 37(1), 106–126.

[99]

Liu, J., Wang, Y., Liu, Y., Shao, S., Zheng, X., & Tang, K. (2023). Synergistic effect of nano zinc oxide and tea tree essential oil on the properties of soluble soybean polysaccharide films. International Journal of Biological Macromolecules, 239, 124361.

[100]

Liu, W., Li, H. J., & Wu, Y. C. (2022). Alginate properties and applications. In H. J. Li & Y. C. Wu (Eds.), Properties and applications of alginate. Springer Nature.

[101]

Lizundia, E., Armentano, I., Luzi, F., Bertoglio, F., Restivo, E., Visai, L., Torre, L., & Puglia, D. (2020). Synergic effect of nanolignin and metal oxide nanoparticles into poly(l-lactide) bionanocomposites: Material properties, antioxidant activity, and antibacterial performance. ACS Applied Bio Materials, 3(8), 5263–5274.

[102]

López-Alcántara, E. M., Colindres-Vásquez, G. M., Fodil, N., Sánchez-Barahona, M., Rivera-Flores, O., Romero, A., & Abdullah, J. A. A. (2024). Agro-waste sweet pepper extract-magnetic iron oxide nanoparticles for antioxidant enrichment and sustainable nanopackaging. Polymers, 16(4), 564.

[103]

Lu, Y., Luo, Q., Chu, Y., Tao, N., Deng, S., Wang, L., & Li, L. (2022). Application of gelatin in food packaging: A review. Polymers, 14(3), 436.

[104]

Luo, Q., Hossen, M. A., Zeng, Y., Dai, J., Li, S., Qin, W., & Liu, Y. (2022). Gelatin-based composite films and their application in food packaging: A review. Journal of Food Engineering, 313, 110762.

[105]

M Ahmed, E., Saber, D., Abd Elaziz, K., Alghtani, A. H., Felemban, B. F., Ali, H. T., & Megahed, M. (2021). Chitosan-based nanocomposites: Preparation and characterization for food packing industry. Materials Research Express, 8(2), 025017.

[106]

Malas, A. (2017). Rubber nanocomposites with graphene as the nanofiller. In S. K. Srivastava & S. K. Nayak (Eds.), Progress in rubber nanocomposites (pp. 137–158). Woodhead Publishing.

[107]

Malathi, A. N., Santhosh, K. S., & Nidoni, U. (2014). Recent trends of biodegradable polymer: Biodegradable films for food packaging and application of nanotechnology in biodegradable food packaging. Current Trends in Technology and Science, 3(2), 247–254.

[108]

Maleki, M., & Mohsenzadeh, M. (2022). Optimization of a biodegradable packaging film based on carboxymethyl cellulose and Persian gum containing titanium dioxide nanoparticles and foeniculum vulgare essential oil using response surface methodology. Journal of Food Processing and Preservation, 46(4), e16424.

[109]

Mann, M. K., & Sooch, B. S. (2023). Biodegradable nano-reinforced packaging with improved functionality to extend the freshness and longevity of Plums Oemleria cerasiformis. Scientific Reports, 13(1), 14583.

[110]

Mehmood, Z., Sadiq, M. B., & Khan, M. R. (2020). Gelatin nanocomposite films incorporated with magnetic iron oxide nanoparticles for shelf life extension of grapes. Journal of Food Safety, 40(4), e12814.

[111]

Mekuye, B., & Abera, B. (2023). Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select, 4(8), 486–501.

[112]

Mihalca, V., Kerezsi, A. D., Weber, A., Gruber-Traub, C., Schmucker, J., Vodnar, D. C., Dulf, F. V., Socaci, S. A., Fărcaș, A., Mureșan, C. I., Suharoschi, R., & Pop, O. L. (2021). Protein-based films and coatings for food industry applications. Polymers, 13(5), 769.

[113]

Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal, 185-186, 1–22.

[114]

Momtaz, M., Momtaz, E., Mehrgardi, M. A., Momtaz, F., Narimani, T., & Poursina, F. (2024). Preparation and characterization of gelatin/chitosan nanocomposite reinforced by NiO nanoparticles as an active food packaging. Scientific Reports, 14(1), 519.

[115]

Morena, A. G., & Tzanov, T. (2022). Antibacterial lignin-based nanoparticles and their use in composite materials. Nanoscale Advances, 4(21), 5121–5134.

[116]

Motelica, L., Ficai, D., Oprea, O. C., Ficai, A., Ene, V. L., Vasile, B. S., Andronescu, E., & Holban, A. M. (2021). Antibacterial biodegradable films based on alginate with silver nanoparticles and lemongrass essential oil–innovative packaging for cheese. Nanomaterials, 11(9), 2377.

[117]

Nanda, A., Pandey, P., Rajinikanth, P. S., & Singh, N. (2024). Revolution of nanotechnology in food packaging: Harnessing electrospun zein nanofibers for improved preservation—A review. International Journal of Biological Macromolecules, 260, 129416.

[118]

Nandhini, J., Karthikeyan, E., & Rajeshkumar, S. (2024). Eco-friendly bio-nanocomposites: Pioneering sustainable biomedical advancements in engineering. Discover nano, 19, 86.

[119]

Nayak, A. K., Mazumder, S., Ara, T. J., Ansari, M. T., & Hasnain, M. S. (2018). Calcium fluoride-based dental nanocomposites. In M. S. Hasnain, A. K. Nayak, & M. T. Ansari (Eds.), Applications of nanocomposite materials in dentistry (pp. 25–44). Woodhead Publishing.

[120]

Negrescu, A. M., Killian, M. S., Raghu, S., Schmuki, P., Mazare, A., & Cimpean, A. (2022). Metal oxide nanoparticles: Review of synthesis, characterization and biological effects. Journal of Functional Biomaterials, 13(4), 274.

[121]

Nelson, B. C., Johnson, M. E., Walker, M. L., Riley, K. R., & Sims, C. M. (2016). Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 5(2), 15.

[122]

Nikolic, M. V., Vasiljevic, Z. Z., Auger, S., & Vidic, J. (2021). Metal oxide nanoparticles for safe active and intelligent food packaging. Trends in Food Science & Technology, 116, 655–668.

[123]

Noorzai, S., & Verbeek, J. R. C. (2021). Collagen: From waste to gold. In S. J. Varjani, T. B. Peixoto, & B. Parameswaran (Eds.), Biotechnological applications of biomass. IntechOpen.

[124]

Osman, A. G., El-Desouky, A. I., Morsy, M. K., Aboud, A. A., & Mohamed, M. H. (2019). Impact of aluminum oxide and silica oxide nanocomposite on foodborne pathogens in chicken fillets. European Journal of Nutrition & Food Safety, 9, 152–162.

[125]

Paladini, F., & Pollini, M. (2019). Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials, 12(16), 2540.

[126]

Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-based sustainable food packaging materials: Challenges, solutions, and applications. Foods, 12(12), 2422.

[127]

Perera, K. Y., Pradhan, D., Rafferty, A., Jaiswal, A. K., & Jaiswal, S. (2023). A comprehensive review on metal oxide-nanocellulose composites in sustainable active and intelligent food packaging. Food Chemistry Advances, 3, 100436.

[128]

Pillai, S. K., & Ray, S. S. (2015). Inorganic-organic hybrid polymers for food packaging. In J. M. Lagaron, C. Nerín, & P. Muñoz (Eds.), Functional polymers in food science: From technology to biology (Vol. 1, pp. 227–248). Wiley.

[129]

Pirsa, S., & Shamusi, T. (2019). Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Materials Science and Engineering: C, 102, 798–809.

[130]

Pop, O. L., Mesaros, A., Vodnar, D. C., Suharoschi, R., Tăbăran, F., Magerușan, L., Tódor, I. S., Diaconeasa, Z., Balint, A., Ciontea, L., & Socaciu, C. (2020). Cerium oxide nanoparticles and their efficient antibacterial application in vitro against gram-positive and gram-negative pathogens. Nanomaterials, 10(8), 1614.

[131]

Praseptiangga, D., Mufida, N., Panatarani, C., & Joni, I. M. (2021). Enhanced multi functionality of semi-refined iota carrageenan as food packaging material by incorporating SiO2 and ZnO nanoparticles. Heliyon, 7(5), e06963.

[132]

Przybyszewska, A., Barbosa, C., Pires, F., Pires, J., Rodrigues, C., Galus, S., Souza, V., Alves, M., Santos, C., Coelhoso, I., & Fernando, A. (2023). Packaging of fresh poultry meat with innovative and sustainable ZnO/Pectin bionanocomposite films—A contribution to the bio and circular economy. Coatings, 13(7), 1208.

[133]

Purohit, S. D., Priyadarshi, R., Bhaskar, R., & Han, S. S. (2023). Chitosan-based multifunctional films reinforced with cerium oxide nanoparticles for food packaging applications. Food Hydrocolloids, 143, 108910.

[134]

Rahman, P. M., Mujeeb, V. M., & Muraleedharan, K. (2017). Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. International Journal of Biological Macromolecules, 97, 382–391.

[135]

Rahman, S., Gogoi, J., Dubey, S., & Chowdhury, D. (2024). Animal derived biopolymers for food packaging applications: A review. International Journal of Biological Macromolecules, 255, 128197.

[136]

Rane, A. V., Kanny, K., Abitha, V. K., & Thomas, S. (2018). Methods for synthesis of nanoparticles and fabrication of nanocomposites. In S. Thomas, A. K. Zachariah, R. K. Mishra, & N. Kumar (Eds.), Synthesis of inorganic nanomaterials: Advances and key technologies (pp. 97–136). Elsevier.

[137]

Rashid, A., Qayum, A., Liang, Q., Kang, L., Ekumah, J. N., Han, X., Ren, X., & Ma, H. (2024). Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. International Journal of Biological Macromolecules, 260, 129479.

[138]

Ratna, I., Aprilia, S., Arahman, N., Bilad, M. R., Suhaimi, H., Munawar, A. A., & Nasution, I. S. (2022). Bio-nanocomposite based on edible gelatin film as active packaging from clarias gariepinus fish skin with the addition of cellulose nanocrystalline and nanopropolis. Polymers, 14(18), 3738.

[139]

Reddy, M. S. B., Ponnamma, D., Choudhary, R., & Sadasivuni, K. K. (2021). A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers, 13(7), 1105.

[140]

Richardson, J. J., Björnmalm, M., & Caruso, F. (2015). Technology-driven layer-by-layer assembly of nanofilms. Science, 348(6233), 411–416.

[141]

Rokayya, S., Jia, F., Li, Y., Nie, X., Xu, J., Han, R., Yu, H., Amanullah, S., Almatrafi, M. M., & Helal, M. (2021). Application of nano-titanum dioxide coating on fresh highbush blueberries shelf life stored under ambient temperature. LWT, 137, 110422.

[142]

Roy, S., & Rhim, J. W. (2019). Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids, 90, 500–507.

[143]

Roy, S., & Rhim, J. W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules, 148, 666–676.

[144]

Rupert, R., Rodrigues, K. F., Thien, V. Y., & Yong, W. T. L. (2022). Carrageenan from kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, structure, production, and application. Frontiers in Plant Science, 13, 859635.

[145]

Sagar, N. A., Kumar, N., Choudhary, R., Bajpai, V. K., Cao, H., Shukla, S., & Pareek, S. (2022). Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packaging and Shelf Life, 34, 100955.

[146]

Santhosh, R., & Sarkar, P. (2024). Fabrication of jamun seed starch/tamarind kernel xyloglucan bio-nanocomposite films incorporated with chitosan nanoparticles and their application on sapota (Manilkara zapota) fruits. International Journal of Biological Macromolecules, 260, 129625.

[147]

dos Santos, M. S., Silva, J. M., Barbieri, M. B., Filho, S. A., & Backx, B. P. (2024). Bionanotechnology and its applications: The plurality of science is fundamental for the search for solutions. Plant Nano Biology, 7, 100060.

[148]

Santos, N. L., Braga, R. C., Bastos, M. S., Cunha, P. L., Mendes, F. R., Galvão, A. M. M. T., Bezerra, G. S., & Passos, A. A. C. (2019). Preparation and characterization of Xyloglucan films extracted from Tamarindus indica seeds for packaging cut-up ‘Sunrise Solo’ papaya. International Journal of Biological Macromolecules, 132, 1163–1175.

[149]

Sanuja, S., Agalya, A., & Umapathy, M. J. (2015). Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. International Journal of Biological Macromolecules, 74, 76–84.

[150]

Saral Sarojini, K., Indumathi, M. P., & Rajarajeswari, G. R. (2019). Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. International Journal of Biological Macromolecules, 124, 163–174.

[151]

Sarfraz, S., Javed, A., Sharif Mughal, S., Bashir, M., Rehman, A., Parveen, S., Khushi, A., & Kamran Khan, M. (2020). Copper oxide nanoparticles: Reactive oxygen species generation and biomedical applications. International Journal of Computational and Theoretical Chemistry, 8(2), 40.

[152]

Shahvalizadeh, R., Ahmadi, R., Davandeh, I., Pezeshki, A., Seyed Moslemi, S. A., Karimi, S., Rahimi, M., Hamishehkar, H., & Mohammadi, M. (2021). Antimicrobial bio-nanocomposite films based on gelatin, tragacanth, and zinc oxide nanoparticles – Microstructural, mechanical, thermo-physical, and barrier properties. Food Chemistry, 354, 129492.

[153]

Shaikh, S., Yaqoob, M., & Aggarwal, P. (2021). An overview of biodegradable packaging in food industry. Current Research in Food Science, 4, 503–520.

[154]

Shankar, S., & Rhim, J. W. (2020). Bio-nanocomposites for food packaging applications. Encyclopedia of Renewable and Sustainable Materials, 5, 29−41.

[155]

Sharaby, M. R., Soliman, E. A., Abdel-Rahman, A. B., Osman, A., & Khalil, R. (2022). Novel pectin-based nanocomposite film for active food packaging applications. Scientific Reports, 12(1), 20673.

[156]

Sharma, B., Nigam, S., Verma, A., Garg, M., Mittal, A., & Sadhu, S. D. (2024). A biogenic approach to develop guava derived edible copper and zinc oxide nanocoating to extend shelf life and efficiency for food preservation. Journal of Polymers and the Environment, 32(1), 331–344.

[157]

Shlapa, Y., Solopan, S., Sarnatskaya, V., Siposova, K., Garcarova, I., Veltruska, K., Timashkov, I., Lykhova, O., Kolesnik, D., Musatov, A., Nikolaev, V., & Belous, A. (2022). Cerium dioxide nanoparticles synthesized via precipitation at constant pH: Synthesis, physical-chemical and antioxidant properties. Colloids and Surfaces B: Biointerfaces, 220, 112960.

[158]

Simon Patrick, D., Govind, A., Bharathi, P., Krishna Mohan, M., Harish, S., Archana, J., & Navaneethan, M. (2023). Hierarchical ZnO/g-C3N4 nanocomposites for enhanced NO2 gas sensing applications. Applied Surface Science, 609, 155337.

[159]

Singh, R., Dutt, S., Sharma, P., Sundramoorthy, A. K., Dubey, A., Singh, A., & Arya, S. (2023). Future of nanotechnology in food industry: Challenges in processing, packaging, and food safety. Global Challenges, 7(4), 2200209.

[160]

Stender, E. G. P., Dybdahl Andersen, C., Fredslund, F., Holck, J., Solberg, A., Teze, D., Peters, G. H., Christensen, B. E., Aachmann, F. L., Welner, D. H., & Svensson, B. (2019). Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. Journal of Biological Chemistry, 294(47), 17915–17930.

[161]

Struller, C. F., Kelly, P. J., & Copeland, N. J. (2014). Aluminum oxide barrier coatings on polymer films for food packaging applications. Surface and Coatings Technology, 241, 130–137.

[162]

Sudhakar, M. P., Venkatnarayanan, S., & Dharani, G. (2022). Fabrication and characterization of bio-nanocomposite films using κ-Carrageenan and Kappaphycus alvarezii seaweed for multiple industrial applications. International Journal of Biological Macromolecules, 219, 138–149.

[163]

Sugumaran, K. R., & Ponnusami, V. (2017). Review on production, downstream processing and characterization of microbial pullulan. Carbohydrate Polymers, 173, 573–591.

[164]

Sun, X., Zhang, H., Wang, J., Dong, M., Jia, P., Bu, T., Wang, Q., & Wang, L. (2021). Sodium alginate-based nanocomposite films with strong antioxidant and antibacterial properties enhanced by polyphenol-rich kiwi peel extracts bio-reduced silver nanoparticles. Food Packaging and Shelf Life, 29, 100741.

[165]

Supreetha, R., Bindya, S., Deepika, P., Vinusha, H. M., & Hema, B. P. (2021). Characterization and biological activities of synthesized citrus pectin-MgO nanocomposite. Results in Chemistry, 3, 100156.

[166]

Swaroop, C., & Shukla, M. (2017). Polylactic acid/magnesium oxide nanocomposite films for food packaging applications. In Proceedings of the 20th international conference on composite materials (ICCM20), Copenhagen, Denmark.

[167]

Swaroop, C., & Shukla, M. (2018). Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. International Journal of Biological Macromolecules, 113, 729–736.

[168]

Tasende, M. G., & Manríquez-Hernández, J. A. (2016). Carrageenan properties and applications: A review. In M. G. Tasende (Ed.), Carrageenans: Sources and extraction methods, molecular structure, bioactive properties and health effects. Nova Science Publishers.

[169]

Thu, T. T. M., Moreira, R. A., Weber, S. A., & Poma, A. B. (2022). Molecular insight into the self-assembly process of cellulose Iβ microfibril. International Journal of Molecular Sciences, 23(15), 8505.

[170]

Tripathi, S., Mehrotra, G. K., & Dutta, P. K. (2011). Chitosan-silver oxide nanocomposite film: Preparation and antimicrobial activity. Bulletin of Materials Science, 34(1), 29–35.

[171]

Trotta, F., Da Silva, S., Massironi, A., Mirpoor, S. F., Lignou, S., Ghawi, S. K., & Charalampopoulos, D. (2023). Silver bionanocomposites as active food packaging: Recent advances & future trends tackling the food waste crisis. Polymers, 15(21), 4243.

[172]

Varghese, R. M., S, A. K., & Shanmugam, R. (2024). Comparative anti-inflammatory activity of silver and zinc oxide nanoparticles synthesized using ocimum tenuiflorum and ocimum gratissimum herbal formulations. Cureus, 16, e52995.

[173]

Varghese, S. A., Phothisarattana, D., Srisa, A., Laorenza, Y., Jarupan, L., Bumbudsanpharoke, N., Chonhenchob, V., & Harnkarnsujarit, N. (2023). Novel eco-friendly antimicrobial UV-blocking PBAT/PBS/TiO2 nanocomposite films for improved shelf-life of bananas. Food Bioscience, 55, 102993.

[174]

Venkatesan, R., Rajeswari, N., & Tamilselvi, A. (2018). Antimicrobial, mechanical, barrier, and thermal properties of bio-based poly (butylene adipate-co-terephthalate) (PBAT)/Ag2O nanocomposite films for packaging application. Polymers for Advanced Technologies, 29(1), 61–68.

[175]

Versino, F., Ortega, F., Monroy, Y., Rivero, S., López, O. V., & García, M. A. (2023). Sustainable and Bio-Based food packaging: A review on past and current design innovations. Foods, 12(5), 1057.

[176]

Wang, J., Li, Z., & Gu, Z. (2021). A comprehensive review of template-synthesized multi-component nanowires: From interfacial design to sensing and actuation applications. Sensors and Actuators Reports, 3, 100029.

[177]

Wang, Y., Xu, H., Wu, M., & Yu, D. G. (2022). Nanofibers-based food packaging. ES Food and Agroforestry, 7, 1–24.

[178]

Xie, Q., Liu, X., Zhang, Y., & Liu, G. (2023). Development and characterization of a new potato starch/watermelon peel pectin composite film loaded with TiO2 nanoparticles and microencapsulated Lycium barbarum leaf flavonoids and its use in the Tan mutton packaging. International Journal of Biological Macromolecules, 252, 126532.

[179]

Xu, N., Peng, X. L., Li, H. R., Liu, J. X., Cheng, J. S., Qi, X. Y., Ye, S. J., Gong, H. L., Zhao, X. H., Yu, J., Xu, G., & Wei, D. X. (2021). Marine-derived collagen as biomaterials for human health. Frontiers in Nutrition, 8, 702108.

[180]

Yadav, P., Yadav, H., Shah, V. G., Shah, G., & Dhaka, G. (2015). Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. Journal of Clinical and Diagnostic Research, 9, ZE21–ZE25.

[181]

Yan, J., Li, M., Wang, H., Lian, X., Fan, Y., Xie, Z., Niu, B., & Li, W. (2021). Preparation and property studies of chitosan-PVA biodegradable antibacterial multilayer films doped with Cu2O and nano-chitosan composites. Food Control, 126, 108049.

[182]

Yang, Z., Li, M., Li, Y., Li, Z., Huang, X., Wang, X., Shi, J., Zou, X., Zhai, X., Povey, M., & Xiao, J. (2023). Improving properties of Litsea cubeba oil pickering emulsion-loaded gelatin-based bio-nanocomposite film via optimizing blending ratio: Application for mango preservation. Food Hydrocolloids, 145, 109052.

[183]

Yi, F., Hou, F., Zhan, S., Song, L., Chen, X., Zhang, R., Gao, M., Han, X., Wang, X., & Liu, Z. (2024). Effect of nano-TiO2 particle size on the performance of chitosan/zein/red radish anthocyanin composite film for visual monitoring of mushroom freshness. Postharvest Biology and Technology, 211, 112809.

[184]

Youssef, A. M., Assem, F. M., Abdel-Aziz, M. E., Elaaser, M., Ibrahim, O. A., Mahmoud, M., & Abd El-Salam, M. H. (2019). Development of bionanocomposite materials and its use in coating of Ras cheese. Food Chemistry, 270, 467–475.

[185]

Yılmaz, G. E., Göktürk, I., Ovezova, M., Yılmaz, F., Kılıç S., & Denizli, A. (2023). Antimicrobial nanomaterials: A review. Hygiene, 3(3), 269–290.

[186]

Zabihi, E., Babaei, A., Shahrampour, D., Arab-Bafrani, Z., Mirshahidi, K. S., & Majidi, H. J. (2019). Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. International Journal of Biological Macromolecules, 131, 107–116.

[187]

Zabotina, O. A. (2012). Xyloglucan and its biosynthesis. Frontiers in Plant Science, 3, 134.

[188]

Zagloul, H., Dhahri, M., Bashal, A. H., Khaleil, M. M., Habeeb, T. H., & Khalil, K. D. (2024). Multifunctional Ag2O/chitosan nanocomposites synthesized via sol-gel with enhanced antimicrobial, and antioxidant properties: A novel food packaging material. International Journal of Biological Macromolecules, 264, 129990.

[189]

Zare, M., Namratha, K., Ilyas, S., Sultana, A., Hezam, A., Sunil, L., Surmeneva, M. A., Surmenev, R. A., Nayan, M. B., Ramakrishna, S., Mathur, S., & Byrappa, K. (2022). Emerging trends for ZnO nanoparticles and their applications in food packaging. ACS Food Science and Technology, 2(5), 763–781.

[190]

Zhang, J., Zhu, L., Li, K. mian Ye, J., Xiao, X., Xue, M., Wang, M., & Chen, Y.-h. (2022). Preparation of bio-based modified starch film and analysis of preservation mechanism for sweet cherry. Food Chemistry: X, 16, 100490.

[191]

Zhang, L., Zhang, M., Mujumdar, A. S., Yu, D., & Wang, H. (2023). Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends in Food Science & Technology, 131, 77–90.

[192]

Zhang, R., Wang, Y., Ma, D., Ahmed, S., Qin, W., & Liu, Y. (2019). Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. Ultrasonics Sonochemistry, 59, 104731.

[193]

Zhang, W., & Rhim, J. W. (2022). Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packaging and Shelf Life, 31, 100806.

[194]

Zhang, Y., & Huang, Y. (2021). Rational design of smart hydrogels for biomedical applications. Frontiers in Chemistry, 8, 615665.

[195]

Zheng, M., Ma, Q., Li, L., Wang, Y., Suo, R., Wang, W., Sun, J., Wang, J., & Liu, H. (2023). Gelatin-based smart film incorporated with nano cerium oxide for rapid detection of shrimp freshness. LWT, 175, 114417.

[196]

Zidan, N., albalawi, M. A., Alalawy, A. I., Al-Duais, M. A., Alzahrani, S., Kasem, M., Tayel, A. A., & Nagib, R. M. (2023). Active and smart antimicrobial food packaging film composed of date palm kernels extract loaded carboxymethyl chitosan and carboxymethyl starch composite for prohibiting foodborne pathogens during fruits preservation. European Polymer Journal, 197, 112353.

[197]

Zoghlami, A., & Paës, G. (2019). Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Frontiers in Chemistry, 7, 874.

RIGHTS & PERMISSIONS

2024 The Author(s). Food Bioengineering published by John Wiley & Sons Australia, Ltd. on behalf of State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology.

AI Summary AI Mindmap
PDF

298

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/