Update application of enzyme in food processing, preservation, and detection

Huan Wang , Zhongke Sun , Yanli Qi , Yuansen Hu , Zifu Ni , Chengwei Li

Food Bioengineering ›› 2024, Vol. 3 ›› Issue (3) : 380 -394.

PDF
Food Bioengineering ›› 2024, Vol. 3 ›› Issue (3) : 380 -394. DOI: 10.1002/fbe2.12105
REVIEW ARTICLE

Update application of enzyme in food processing, preservation, and detection

Author information +
History +
PDF

Abstract

Enzymes play a crucial role in enhancing food processing techniques and improving flavor quality. They are also used for prolonging the storage period and rapid detection of foodborne diseases, essential for ensuring food quality and safety. With the rapid development of the food industry, the application prospects of enzymes have become increasingly prominent. In this review, the applications of enzymes in food processing, preservation, and detection were expounded in detail, and further attention is paid to the processing points and application effects of enzymes in all aspects of food production. The research and application direction of enzymes in the future were also speculated to help interested parties to understand the application advantages and prospects of enzymes.

Keywords

enzymes / food contaminant detection / food preservation / food processing

Cite this article

Download citation ▾
Huan Wang, Zhongke Sun, Yanli Qi, Yuansen Hu, Zifu Ni, Chengwei Li. Update application of enzyme in food processing, preservation, and detection. Food Bioengineering, 2024, 3(3): 380-394 DOI:10.1002/fbe2.12105

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abril, B., Bou, R., García-Pérez, J. V., & Benedito, J. (2023). Role of enzymatic reactions in meat processing and use of emerging technologies for process intensification. Foods, 12, 1940.

[2]

Al, M., Ersöz, F., Özaktaş T., Türkanoğlu-Özçelik, A., & Küçükçetin, A. (2020). Comparison of the effects of adding microbial transglutaminase to milk and ice cream mixture on the properties of ice cream. International Journal of Dairy Technology, 73, 578–584.

[3]

Ali, B., Khan, K. Y., Majeed, H., Xu, L., Bakry, A. M., Raza, H., Shoaib, M., Wu, F., & Xu, X. (2019). Production of ingredient type flavoured white enzyme modified cheese. Journal of Food Science and Technology, 56, 1683–1695.

[4]

Andrzej, K. M., Małgorzata, M., Sabina, K., Horbańczuk, O. K., & Rodak, E. (2020). Application of rich in β-glucan flours and preparations in bread baked from frozen dough. Food Science and Technology International, 26, 53–64.

[5]

Asano, S., Shimokawa, M., & Suzuki, K. (2018). PCR analysis methods for detection and identification of Beer-Spoilage lactic acid bacteria. Methods in Molecular Biology, 1887, 95–107.

[6]

Ashaolu, T. J., Khalifa, I., Mesak, M. A., Lorenzo, J. M., & Farag, M. A. (2023). A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety. Critical Reviews in Food Science and Nutrition, 63, 3538–3555.

[7]

Bai, H., Bu, S., Liu, W., Wang, C., Li, Z., Hao, Z., Wan, J., & Han, Y. (2020). An electrochemical aptasensor based on cocoon-like DNA nanostructure signal amplification for the detection of Escherichia coli O157:H7. The Analyst, 145, 7340–7348.

[8]

Bai, M., Wang, Y., Zhang, C., Wang, Y., Wei, J., Liao, X., Wang, J., Anfossi, L., & Wang, Y. (2023). Nanobody-based immunomagnetic separation platform for rapid isolation and detection of Salmonella enteritidis in food samples. Food Chemistry, 424, 136416.

[9]

Bansal, S., Mangal, M., Tushir, S., Oberoi, H. S., & Gupta, R. K. (2019). A rapid and reliable method for the specific detection of aflatoxigenic fungi in groundnut and rice samples. Journal of Food Processing and Preservation, 43, e14127.

[10]

Barros, J. H. T., de Carvalho Oliveira, L., Cristianini, M., & Steel, C. J. (2023). Non-thermal emerging technologies as alternatives to chemical additives to improve the quality of wheat flour for breadmaking: A review. Critical Reviews in Food Science and Nutrition, 63, 1612–1628.

[11]

Bundidamorn, D., Supawasit, W., & Trevanich, S. (2021). Taqman® probe based multiplex RT-PCR for simultaneous detection of Listeria monocytogenes, Salmonella spp. and shiga toxin-producing Escherichia coli in foods. LWT, 147, 111696.

[12]

Campos-Giménez, E., Bénet, S., Oguey, Y., Martin, F., & Redeuil, K. (2018). The contribution of minor folates to the total vitamin B9 content of infant formula and clinical nutrition products. Food Chemistry, 249, 91–97.

[13]

Ceren Akal, H. (2022). Effect of donkey milk lactoferrin and lysozyme on yoghurt properties. Mljekarstvo, 72, 77–87.

[14]

Ceresino, E. B., Kuktaite, R., Sato, H. H., Hedenqvist, M. S., & Johansson, E. (2019). Impact of gluten separation process and transglutaminase source on gluten based dough properties. Food Hydrocolloids, 87, 661–669.

[15]

Chen, J., Lin, H., Li, S., Zhao, J., Ahmed, I., Zhi, L., & Li, Z. (2021). Development of a sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of egg residues in processed food products. Food Analytical Methods, 14, 1806–1814.

[16]

Chen, J., Lu, Y., Yan, F., Wu, Y., Huang, D., & Weng, Z. (2020). A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chemistry, 310, 125922.

[17]

Chen, X., He, J., Tan, G., Liang, J., Hou, Y., Wang, M., & Wang, B. (2019). Development of an enzyme-linked immunosorbent assay and a dipstick assay for the rapid analysis of trans-resveratrol in grape berries. Food Chemistry, 291, 132–138.

[18]

Chi, H., & Liu, G. (2023). A fluorometric sandwich biosensor based on molecular imprinted polymer and aptamer modified CdTe/ZnS for detection of aflatoxin B1 in edible oil. LWT, 180, 114726.

[19]

Cimini, A., & Moresi, M. (2018). Combined enzymatic and crossflow microfiltration process to assure the colloidal stability of beer. LWT, 90, 132–137.

[20]

Collados, A., Conversa, V., Fombellida, M., Rozas, S., Kim, J. H., Arboleya, J.-C., Román, M., & Perezábad, L. (2020). Applying food enzymes in the kitchen. International Journal of Gastronomy and Food Science, 21, 100212.

[21]

Córdova, A., Henríquez, P., Nuñez, H., Rico-Rodriguez, F., Guerrero, C., Astudillo-Castro, C., & Illanes, A. (2022). Recent advances in the application of enzyme processing assisted by ultrasound in agri-foods: A review. Catalysts, 12, 107.

[22]

Cosme, F., Inês, A., & Vilela, A. (2023). Microbial and commercial enzymes applied in the beverage production process. Fermentation, 9, 385.

[23]

Cui, Y., Wang, X., Wu, H., Zhang, X., Xu, Y., Yu, G., Liu, X., Yao, Q., Wang, J., & Ji, Y. (2024). A “one to two” novel sandwich immunoassay based on nanobodies for detection of staphylococcal enterotoxin A in food samples. Food Control, 160, 110313.

[24]

Dahiya, S., Bajaj, B. K., Kumar, A., Tiwari, S. K., & Singh, B. (2020). A review on biotechnological potential of multifarious enzymes in bread making. Process Biochemistry, 99, 290–306.

[25]

Deckers, M., Deforce, D., Fraiture, M.-A., & Roosens, N. H. C. (2020). Genetically modified micro-organisms for industrial food enzyme production: An overview. Foods, 9, 326.

[26]

Deckers, M., Vanneste, K., Winand, R., Keersmaecker, S. C. J. D., Denayer, S., Heyndrickx, M., Deforce, D., Fraiture, M.-A., & Roosens, N. H. C. (2020). Strategy for the identification of micro-organisms producing food and feed products: Bacteria producing food enzymes as study case. Food Chemistry, 305, 125431.

[27]

Dolas, R., Saravanan, C., & Kaur, B. P. (2019). Emergence and era of ultrasonic’s in fruit juice preservation: A review. Ultrasonics Sonochemistry, 58, 104609.

[28]

Dong, Y., Jiang, T., Wu, T., Wang, W., Xie, Z., Yu, X., Peng, Y., Wang, L., Xiao, Y., & Zhong, T. (2024). Enzyme-responsive controlled-release materials for food preservation and crop protection—A review. International Journal of Biological Macromolecules, 254, 128051.

[29]

Duan, N., Wu, S., Ma, X., Xia, Y., & Wang, Z. (2014). A universal fluorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria. Analytical Biochemistry, 454, 1–6.

[30]

van den Dungen, M. W., Boer, R., Wilms, L. C., Efimova, Y., & Abbas, H. E. (2021). The safety of a kluyveromyces lactis strain lineage for enzyme production. Regulatory Toxicology and Pharmacology, 126, 105027.

[31]

Fenzl, V., & Schönberger, Ø. L. (2018). Improved method for measuring lipoxygenase activity in barley and malt. Journal of the American Society of Brewing Chemists, 76, 24–28.

[32]

Freitas, D., Gómez-Mascaraque, L. G., & Brodkorb, A. (2022). Digestion of protein and toxic gluten peptides in wheat bread, pasta and cereal and the effect of a supplemental enzyme mix. Frontiers in Nutrition, 9, 986272.

[33]

Fu, Y., Liu, J., Hansen, E. T., Bredie, W. L. P., & Lametsch, R. (2018). Structural characteristics of low bitter and high umami protein hydrolysates prepared from bovine muscle and porcine plasma. Food Chemistry, 257, 163–171.

[34]

Garcia-Quinto, E., Aranda-Cañada, R., García-García, P., & Fernández-Lorente, G. (2023). Use of potential immobilized enzymes for the modification of liquid foods in the food industry. Processes, 11, 1840.

[35]

Gaspar-Pintiliescu, A., Oancea, A., Cotarlet, M., Vasile, A. M., Bahrim, G. E., Shaposhnikov, S., Craciunescu, O., & Oprita, E. I. (2020). Angiotensin-converting enzyme inhibition, antioxidant activity and cytotoxicity of bioactive peptides from fermented bovine colostrum. International Journal of Dairy Technology, 73, 108–116.

[36]

Ge, J., Jiang, X., Liu, W., Wang, Y., Huang, H., Bai, Y., Su, X., Yao, B., & Luo, H. (2020). Characterization, stability improvement, and bread baking applications of a novel cold-adapted glucose oxidase from Cladosporium neopsychrotolerans SL16. Food Chemistry, 310, 125970.

[37]

Gokoglu, N. (2019). Novel natural food preservatives and applications in seafood preservation: A review. Journal of the Science of Food and Agriculture, 99, 2068–2077.

[38]

Gonçalves, D. A., Alves, V. D., Teixeira, J. A., & Nobre, C. (2023). Development of a functional prebiotic strawberry preparation by in situ enzymatic conversion of sucrose into fructo-oligosaccharides. Food Research International, 168, 112671.

[39]

Gonçalves, S., Lee, S., Mousavi Khaneghah, A., & Oliveira, C. (2020). Enzyme-based approaches to control microbial biofilms in dairy processing environments: A review. Quality Assurance and Safety of Crops & Foods, 12, 50–58.

[40]

Gong, X., An, Q., Le, L., Geng, F., Jiang, L., Yan, J., Xiang, D., Peng, L., Zou, L., Zhao, G., & Wan, Y. (2022). Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Critical Reviews in Food Science and Nutrition, 62, 2855–2871.

[41]

Gu, K., Song, Z., Zhou, C., Ma, P., Li, C., Lu, Q., Liao, Z., Huang, Z., Tang, Y., Li, H., Zhao, Y., Yan, W., Lei, C., & Wang, H. (2022). Development of nanobody-horseradish peroxidase-based sandwich ELISA to detect Salmonella enteritidis in milk and in vivo colonization in chicken. Journal of Nanobiotechnology, 20, 167.

[42]

Gu, Z., Chen, B., & Tian, Y. (2021). Highly branched corn starch: Preparation, encapsulation, and release of ascorbic acid. Food Chemistry, 343, 128485.

[43]

Guo, L., Ya, M., Hai, X., Guo, Y.-S., Li, C.-D., Xu, W.-L., Liao, C.-S., Feng, W., & Cai, Q. (2019). A simultaneous triplex TaqMan real-time PCR approach for authentication of caprine and bovine meat, milk and cheese. International Dairy Journal, 95, 58–64.

[44]

Hao, L., Gu, H., Duan, N., Wu, S., Ma, X., Xia, Y., Wang, H., & Wang, Z. (2017). A chemiluminescent aptasensor based on rolling circle amplification and Co2+/N-(aminobutyl)-N-(ethylisoluminol) functional flowerlike gold nanoparticles for Salmonella typhimurium detection. Talanta, 164, 275–282.

[45]

He, X., Chen, L., Pu, Y., Wang, H., Cao, J., & Jiang, W. (2023). Fruit and vegetable polyphenols as natural bioactive inhibitors of pancreatic lipase and cholesterol esterase: Inhibition mechanisms, polyphenol influences, application challenges. Food bioscience, 55, 103054.

[46]

Hoang, N.-H., Do, H. H., Dang, T. H. Y., Ton, N. M. N., Tran, T. T. T., & Le, V. V. M. (2022). Fiber-enriched biscuits prepared with enzyme-treated corncob powder: Nutritional composition, physical properties, and sensory acceptability. Journal of Food Processing and Preservation, 46, e16784.

[47]

Huang, L., Tang, Y., Han, J., Niu, X., Lin, X., & Wu, Y. (2024). A stable colorimetric biosensor for highly selective detection of malathion residue in food based on aptamer-regulated laccase-mimic activity. Food Chemistry, 446, 138842.

[48]

Huang, Y., Mu, X., Wang, J., Wang, Y., Xie, J., Ying, R., & Su, E. (2022). The recent development of nanozymes for food quality and safety detection. Journal of Materials Chemistry B, 10, 1359–1368.

[49]

Iqbal, A., Murtaza, A., Hu, W., Ahmad, I., Ahmed, A., & Xu, X. (2019). Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food and Bioproducts Processing, 117, 170–182.

[50]

Ji, H., Liu, J., McClements, D. J., Bai, Y., Li, Z., Chen, L., Qiu, C., Zhan, X., & Jin, Z. (2022). Malto-oligosaccharides as critical functional ingredient: A review of their properties, preparation, and versatile applications. Critical Reviews in Food Science and Nutrition, 18, 34291.

[51]

Jiao, Y., Zhang, Z., Wang, K., Zhang, H., & Gao, J. (2023). Rapid detection of salmonella in food matrices by photonic PCR based on the photothermal effect of Fe3O4. Food Chemistry: X, 19, 100798.

[52]

Kamijo, J., Sakai, K., Suzuki, H., Suzuki, K., Kunitake, E., Shimizu, M., & Kato, M. (2019). Identification and characterization of a thermostable pectate lyase from Aspergillus luchuensis var. saitoi. Food Chemistry, 276, 503–510.

[53]

Kim, D. W., Chun, H. J., Kim, J.-H., Yoon, H., & Yoon, H. C. (2019). A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella typhimurium based on a stem-loop DNA probe and retro-reflective signaling. Nano Convergence, 6, 16.

[54]

Kondrotiene, K., Zavistanaviciute, P., Aksomaitiene, J., Novoslavskij, A., & Malakauskas, M. (2024). Lactococcus lactis in dairy fermentation-health-promoting and probiotic properties. Fermentation, 10, 16.

[55]

Kumar, M., Dahuja, A., Sachdev, A., Tomar, M., Lorenzo, J. M., Dhumal, S., Radha, D., Chandran, D., Varghese, E., Saha, S., Sairam, K. V. S. S., Singh, S., Senapathy, M., Amarowicz, R., Kaur, C., Kennedy, J. F., & Mekhemar, M. (2022). Optimization of the use of cellulolytic enzyme preparation for the extraction of health promoting anthocyanins from black carrot using response surface methodology. LWT, 163, 113528.

[56]

Lambre, C., Barat Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., & Lampi, E. (2021). Scientific guidance for the submission of dossiers on food enzymes. EFSA Journal, 19, 6851.

[57]

Lanzl, M. I., Zwietering, M. H., Abee, T., & den Besten, H. M. W. (2022). Combining enrichment with multiplex real-time PCR leads to faster detection and identification of Campylobacter spp. in food compared to ISO 10272-1:2017. Food Microbiology, 108, 104117.

[58]

Li, D., Zhao, Y., Fei, T., Wang, Y., Lee, B.-H., Shim, J.-H., Xu, B., Li, Z., & Li, X. (2019). Effects of Streptococcus thermophilus GtfB enzyme on dough rheology, bread quality and starch digestibility. Food Hydrocolloids, 96, 134–139.

[59]

Li, Y., Shen, Z., Ding, S., & Wang, S. (2020). A TaqMan-based multiplex real-time PCR assay for the rapid detection of tigecycline resistance genes from bacteria, faeces and environmental samples. BMC Microbiology, 20, 174.

[60]

Li, Z., Lu, F., & Liu, Y. (2023). A review of the mechanism, properties, and applications of hydrogels prepared by enzymatic cross-linking. Journal of Agricultural and Food Chemistry, 71, 10238–10249.

[61]

Liang, J., Taylor, S. L., Baumert, J., & Alice Lee, N. (2022). Development of a sensitive sandwich ELISA with broad species specificity for improved fish allergen detection. Food Chemistry, 396, 133656.

[62]

Liang, T., Long, H., Zhan, Z., Zhu, Y., Kuang, P., Mo, N., Wang, Y., Cui, S., & Wu, X. (2022). Simultaneous detection of viable Salmonella spp., Escherichia coli, and Staphylococcus aureus in bird’s nest, donkey-hide gelatin, and wolfberry using PMA with multiplex real-time quantitative PCR. Food Science & Nutrition, 10, 3165–3174.

[63]

Liu, Z., Liu, J., Ren, L., Wu, J., & Chen, S. (2022). Preparation of high-quality resistant dextrin through pyrodextrin by a multienzyme complex. Food Bioscience, 47, 101701.

[64]

Lukin, A. (2020). Application and comparison of proteolytic enzyme preparations in technology of protein hydrolyzates. Food science and technology, 40, 287–292.

[65]

Luzzi, G., Steffens, M., Clawin-Rädecker, I., Hoffmann, W., Franz, C. M. A. P., Fritsche, J., & Lorenzen, P. C. (2020). Enhancing the sweetening power of lactose by enzymatic modification in the reformulation of dairy products. International Journal of Dairy Technology, 73, 502–512.

[66]

Madhusankha, G. D. M. P., & Thilakarathna, R. C. N. (2021). Meat tenderization mechanism and the impact of plant exogenous proteases: A review. Arabian Journal of Chemistry, 14, 102967.

[67]

Mieszczakowska-Frąc, M., Celejewska, K., & Płocharski, W. (2021). Impact of innovative technologies on the content of vitamin c and its bioavailability from processed fruit and vegetable products. Antioxidants, 10, 54.

[68]

Mohammadi, A., Jafari, S. M., Mahoonak, A. S., & Ghorbani, M. (2021). Liposomal/nanoliposomal encapsulation of food-relevant enzymes and their application in the food industry. Food and Bioprocess Technology, 14, 23–38.

[69]

Mohammadi, M., Zoghi, A., & Azizi, M. H. (2021). Effect of xylanase and pentosanase enzymes on dough rheological properties and quality of baguette bread. Journal of Food Quality, 2022, 2910821.

[70]

Nguyen, V. D., Styevkó G., Ta, L. P., Tran, A. T. M., Bujna, E., Orbán, P., Dam, M. S., & Nguyen, Q. D. (2018). Immobilization and some properties of commercial enzyme preparation for production of lactulose-based oligosaccharides. Food and Bioproducts Processing, 107, 97–103.

[71]

Nhari, R. M. H. R., Hanish, I., Mokhtar, N. F. K., Hamid, M., & El Sheikha, A. F. (2019). Authentication approach using enzyme-linked immunosorbent assay for detection of porcine substances. Quality Assurance and Safety of Crops & Foods, 11, 449–457.

[72]

Ogilvie, O., Roberts, S., Sutton, K., Larsen, N., Gerrard, J., & Domigan, L. (2021). The use of microbial transglutaminase in a bread system: A study of gluten protein structure, deamidation state and protein digestion. Food Chemistry, 340, 127903.

[73]

Ozer, M. S., Kirkan, B., Sarikurkcu, C., Cengiz, M., Ceylan, O., Atılgan, N., & Tepe, B. (2018). Onosma heterophyllum: Phenolic composition, enzyme inhibitory and antioxidant activities. Industrial Crops and Products, 111, 179–184.

[74]

Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: a review. Food Chemistry, 338, 128119.

[75]

Parihar, R., Deb, R., Niharika, J., Thakur, P., Pegu, S. R., Sengar, G. S., & Sonowal, J. (2024). Development of triplex assay for simultaneous detection of Escherichia coli, methicillin resistant and sensitive Staphylococcus aureus in raw pork samples of retail markets. Journal of Food Science and Technology-Mysore, 20, 05917.

[76]

Park, S.-Y., Hwang, S.-H., & Lee, J.-H. (2018). Saccharification and alcohol fermentation characteristics of barley malt preparations for use in organic processed food. Journal of Food Biochemistry, 42, e12581.

[77]

Poutanen, K. S., Kårlund, A. O., Gómez-Gallego, C., Johansson, D. P., Scheers, N. M., Marklinder, I. M., Eriksen, A. K., Silventoinen, P. C., Nordlund, E., Sozer, N., Hanhineva, K. J., Kolehmainen, M., & Landberg, R. (2022). Grains: A major source of sustainable protein for health. Nutrition Reviews, 80, 1648–1663.

[78]

Prasad, M. C. B., Milton, A. A. P., Menon, V. K., Ghatak, S., Srinivas, K., Momin, K. M., Vineesha, S. L., Das, S., Sen, A., Latha, C., Sunil, B., & Jolly, D. (2023). Saltatory rolling circle amplification assay for simple and visual detection of Listeria monocytogenes in milk and milk products. International Dairy Journal, 137, 105498.

[79]

Punia Bangar, S., Trif, M., Ozogul, F., Kumar, M., Chaudhary, V., Vukic, M., Tomar, M., & Changan, S. (2022). Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 21, 1958–1978.

[80]

Ramos, N. J. S., Rocha, E. B. M., Gusmão, T. A. S., Nascimento, A., Lisboa, H. M., & de Gusmão, R. P. (2023). Optimizing gluten-free pasta quality: The impacts of transglutaminase concentration and kneading time on cooking properties, nutritional value, and rheological characteristics. LWT, 189, 115485.

[81]

Ramos-Vivas, J., Elexpuru-Zabaleta, M., Samano, M. L., Barrera, A. P., Forbes-Hernández, T. Y., Giampieri, F., & Battino, M. (2021). Phages and enzybiotics in food biopreservation. Molecules, 26, 5138.

[82]

Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56, 16–30.

[83]

Saad, M., Ombarak, R., & Rabou, H. (2019). Effect of nisin and lysozyme on bacteriological and sensorial quality of pasteurized milk. Journal of Advanced Veterinary and Animal Research, 6, 403–408.

[84]

Shao, L., Zhao, Y., Zou, B., Li, X., & Dai, R. (2021). Ohmic heating in fruit and vegetable processing: Quality characteristics, enzyme inactivation, challenges and prospective. Trends in Food Science & Technology, 118, 601–616.

[85]

Silano, V., Baviera, J. M. B., Bolognesi, C., Bruschweiler, B. J., Cocconcelli, P. S., Crebelli, R., Gott, D. M., & Grob, K. (2019). Characterisation of microorganisms used for the production of food enzymes. EFSA Journal, 17, 5741.

[86]

Silano, V., Baviera, J. M. B., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., & Lambre, C. (2021). Safety evaluation of a food enzyme containing trypsin, chymotrypsin, elastase and carboxypeptidase from porcine pancreas. EFSA Journal, 19, 6368.

[87]

da Silva, R. R. (2019). Enzyme technology in food preservation: A promising and sustainable strategy for biocontrol of post-harvest fungal pathogens. Food Chemistry, 277, 531–532.

[88]

Singh, M., Agrawal, R. K., Singh, B. R., Mendiratta, S. K., Kumar, D., & Kumar, B. (2024). Development and evaluation of sandwich ELISA for detection and quantification of Staphylococcal enterotoxin—A in food. Journal of Food Safety, 44, e13114.

[89]

de Souza, T. S. P., & Kawaguti, H. Y. (2021). Cellulases, Hemicellulases, and pectinases: Applications in the food and beverage industry. Food and Bioprocess Technology, 14, 1446–1477.

[90]

Sozbilen, G. S., Korel, F., & Yemenicioğlu, A. (2018). Control of lactic acid bacteria in fermented beverages using lysozyme and nisin: Test of traditional beverage boza as a model food system. International Journal of Food Science & Technology, 53, 2357–2368.

[91]

Sultana, S., Hossain, M. A. M., Azlan, A., Johan, M. R., Chowdhury, Z. Z., & Ali, M. E. (2020). TaqMan probe based multiplex quantitative PCR assay for determination of bovine, porcine and fish DNA in gelatin admixture, food products and dietary supplements. Food Chemistry, 325, 126756.

[92]

Sun, X., Hong, H., Jia, S., Liu, Y., & Luo, Y. (2020). Effects of phytic acid and lysozyme on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets stored at 4°C. Food Microbiology, 86, 103313.

[93]

Tan, H., Qiu, Y., Chen, S., Chen, X., Wu, Y., He, S., Li, X., & Chen, H. (2024). A rapid immunomagnetic beads-based sELISA method for the detection of bovine αs1-casein based on specific epitopes. Food Chemistry, 444, 138565.

[94]

Trusek, A., Dworakowska, D., & Czyzewska, K. (2020). 3D enzymatic preparations with graphene oxide flakes and hydrogel to obtain lactose-free products. Food and Bioproducts Processing, 121, 224–229.

[95]

Tsyganov, M. S., Ezhkova, G. O., Kharitonova, M. A., & Nikitina, E. V. (2022). Cassava starch as an effective texture corrector of fat-free dairy products based on symbiotic starter culture. International Journal of Food Science, 2022, 1087043.

[96]

Villa, C., Moura, M. B. M. V., Costa, J., & Mafra, I. (2022). β-Lactoglobulin versus casein indirect ELISA for the detection of cow’s milk allergens in raw and processed model meat products. Food Control, 135, 108818.

[97]

Wang, A., You, X., Liu, H., Zhou, J., Chen, Y., Zhang, C., Ma, K., Liu, Y., Ding, P., Qi, Y., & Zhang, G. (2022). Development of a label free electrochemical sensor based on a sensitive monoclonal antibody for the detection of tiamulin. Food Chemistry, 366, 130573.

[98]

Wang, F., Chen, X., Wang, Y., Li, X., Wan, M., Zhang, G., Leng, F., & Zhang, H. (2022). Insights into the structures, inhibitors, and improvement strategies of glucose oxidase. International Journal of Molecular Sciences, 23, 9841.

[99]

Wang, Z., Tang, H., Liu, G., Gong, H., Li, Y., Chen, Y., & Yang, Y. (2023). Compound probiotics producing cellulase could replace cellulase preparations during solid-state fermentation of millet bran. Bioresource Technology, 385, 129457.

[100]

Wei, Q., Zheng, H., Han, X., Zheng, C., Huang, C., Jin, Z., Li, Y., & Zhou, J. (2023). Octenyl succinic anhydride modified starch with excellent emulsifying properties prepared by selective hydrolysis of supramolecular immobilized enzyme. International Journal of Biological Macromolecules, 232, 123383.

[101]

Wei, S., Daliri, E. B.-M., Chelliah, R., Park, B.-J., Lim, J.-S., Baek, M.-A., Nam, Y.-S., Seo, K.-H., Jin, Y.-G., & Oh, D. H. (2019). Development of a multiplex real-time PCR for simultaneous detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in food samples. Journal of Food Safety, 39, e12558.

[102]

Wen, C., Zhang, J., Duan, Y., Zhang, H., & Ma, H. (2019). A mini-review on brewer’s spent grain protein: Isolation, physicochemical properties, application of protein, and functional properties of hydrolysates. Journal of Food Science, 84, 3330–3340.

[103]

Wu, B., Hu, J. S., & Li, Y. (2022). Development of an ultra-sensitive single-tube nested PCR assay for rapid detection of Campylobacter jejuni in ground chicken. Food Microbiology, 106, 104052.

[104]

Wu, L., Li, G., Xu, X., Zhu, L., Huang, R., & Chen, X. (2019). Application of nano-ELISA in food analysis: Recent advances and challenges. TrAC, Trends in Analytical Chemistry, 113, 140–156.

[105]

Wu, L., Zhou, M., Wang, Y., & Liu, J. (2020). Nanozyme and aptamer- based immunosorbent assay for aflatoxin B1. Journal of Hazardous Materials, 399, 123154.

[106]

Wu, T., Ge, Y., Li, Y., Xiang, Y., Jiang, Y., & Hu, Y. (2018). Quality enhancement of large yellow croaker treated with edible coatings based on chitosan and lysozyme. International Journal of Biological Macromolecules, 120, 1072–1079.

[107]

Wu, T., Jiang, Q., Wu, D., Hu, Y., Chen, S., Ding, T., Ye, X., Liu, D., & Chen, J. (2019). What is new in lysozyme research and its application in food industry? A review. Food Chemistry, 274, 698–709.

[108]

Wu, W., Li, J., Pan, D., Li, J., Song, S., Rong, M., Li, Z., Gao, J., & Lu, J. (2014). Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of salmonella typhimurium. ACS Applied Materials & Interfaces, 6, 16974–16981.

[109]

Xing, L., Li, G., Toldra, F., & Zhang, W. (2021). The physiological activity of bioactive peptides obtained from meat and meat by-products. Advances in Food and Nutrition Research, 97, 147–185.

[110]

Yan, Z., Hu, X., & Wang, Q. (2020). Sensitive and specific detection of E. coli, listeria monocytogenes, and Salmonella enterica serovar Typhimurium in milk by microchip electrophoresis combined with multiplex PCR amplification. Microchemical Journal, 157, 104876.

[111]

Yang, X., & Zhang, Y. (2019). Expression of recombinant transglutaminase gene in Pichia pastoris and its uses in restructured meat products. Food Chemistry, 291, 245–252.

[112]

Yang, Z., Huang, Q., Xing, J.-J., Guo, X.-N., & Zhu, K.-X. (2021). Changes of lipids in noodle dough and dried noodles during industrial processing. Journal of Food Science, 86, 3517–3528.

[113]

Yilmaz, E. (2018). Use of hydrolytic enzymes as green and effective extraction agents for ultrasound assisted-enzyme based hydrolytic water phase microextraction of arsenic in food samples. Talanta, 189, 302–307.

[114]

Yin, R., Sun, Y., Wang, K., Feng, N., Zhang, H., & Xiao, M. (2020). Development of a PCR-based lateral flow strip assay for the simple, rapid, and accurate detection of pork in meat and meat products. Food Chemistry, 318, 126541.

[115]

Yu, D., Yu, Z., Zhao, W., Regenstein, J. M., & Xia, W. (2022). Advances in the application of chitosan as a sustainable bioactive material in food preservation. Critical Reviews in Food Science and Nutrition, 62, 3782–3797.

[116]

Yu, T., Xu, H., Zhao, Y., Han, Y., Zhang, Y., Zhang, J., Xu, C., Wang, W., Guo, Q., & Ge, J. (2020). Aptamer based high throughput colorimetric biosensor for detection of Staphylococcus aureus. Scientific Reports, 10, 9190.

[117]

Yu, Y., Li, R., Ma, Z., Han, M., Zhang, S., Zhang, M., & Qiu, Y. (2021). Development and evaluation of a novel loop mediated isothermal amplification coupled with TaqMan probe assay for detection of genetically modified organism with NOS terminator. Food Chemistry, 356, 129684.

[118]

Yue, Y., Chen, J., Zhang, M., Yin, Y., & Dong, Y. (2022). Determination of organophosphorus pesticides in vegetables and fruit by an indirect competitive Enzyme-Linked immunosorbent assay (ic-ELISA) and a Lateral-Flow immunochromatographic (LFIC) strip assay. Analytical Letters, 55, 1701–1718.

[119]

Zhao, Y., Wang, X., Pan, S., Hong, F., Lu, P., Hu, X., Jiang, F., Wu, L., & Chen, Y. (2024). Bimetallic nanozyme-bioenzyme hybrid material-mediated ultrasensitive and automatic immunoassay for the detection of aflatoxin B1 in food. Biosensors & Bioelectronics, 248, 115992.

[120]

Zinoubi, K., Chrouda, A., Soltane, R., Al-Ghamdi, Y. O., Garallah Almalki, S., Osman, G., Barhoumi, H., & Jaffrezic Renault, N. (2021). Highly sensitive impedimetric biosensor based on thermolysin immobilized on a GCE modified with AuNP-decorated graphene for the detection of ochratoxin A. Electroanalysis, 33, 136–145.

[121]

Zuo, H., Wang, X., Liu, W., Chen, Z., Liu, R., Yang, H., Xia, C., Xie, J., Sun, T., & Ning, B. (2023). Nanobody-based magnetic chemiluminescence immunoassay for one-pot detection of ochratoxin A. Talanta, 258, 124388.

[122]

Zuo, M., Yang, Y., Jiang, S., Zhu, C., Han, Y., Hu, J., Ren, K., Cui, L., & Zhang, C.-Y. (2024). Ultrathin-FeOOH-coated MnO2 nanozyme with enhanced catalase-like and oxidase-like activities for photoelectrochemical and colorimetric detection of organophosphorus pesticides. Food Chemistry, 445, 138716.

RIGHTS & PERMISSIONS

2024 The Author(s). Food Bioengineering published by John Wiley & Sons Australia, Ltd. on behalf of State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology.

AI Summary AI Mindmap
PDF

754

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/