Bioprocess strategies for enhanced performance in single-use bioreactors for biomolecule synthesis: A biokinetic approach

Debashis Dutta , Prashant Kumar , Ajay Singh , Shankar Khade

Food Bioengineering ›› 2024, Vol. 3 ›› Issue (3) : 337 -351.

PDF
Food Bioengineering ›› 2024, Vol. 3 ›› Issue (3) : 337 -351. DOI: 10.1002/fbe2.12104
REVIEW ARTICLE

Bioprocess strategies for enhanced performance in single-use bioreactors for biomolecule synthesis: A biokinetic approach

Author information +
History +
PDF

Abstract

Single-use bioreactors (SUB) have made a significant impact on the field of bioprocessing, becoming increasingly popular for biomolecule synthesis due to their many advantages, such as minimizing contamination risks and streamlining processes. Extensive research has been conducted on the hydrodynamic conditions within single-use bioreactors, with a focus on parameters like mixing time, oxygen transfer rate, and stress levels to improve cell cultivation procedures. Several studies have demonstrated that SUB can effectively nurture various cell types, including those that generate monoclonal antibodies, yielding outcomes similar to conventional bioreactor systems, thus highlighting their adaptability and effectiveness in biomolecule processing. SUB equipped with wave mechanisms have shown to display comparable metabolic behaviors and fermentation consistency to conventional bioreactors, confirming their dependability in supporting fungal growth and metabolite generation. Mechanical stirring for agitation leads to high shear forces alongside enhanced monitoring and control, influencing microbial physiology and macro-morphologies. This underscores the importance of operational factors such as rocking speed, rocking angle, and gas flow rate. Overall, the integration of single-use bioreactors in biomolecule synthesis is expected to expand, driven by the need for increased yields and cost-effective manufacturing solutions.

Keywords

bioactive molecules / bioprocessing / bioreactors / fermentation / oxygen transfer rate / single-use bioreactors (SUB) / wave bioreactor

Cite this article

Download citation ▾
Debashis Dutta, Prashant Kumar, Ajay Singh, Shankar Khade. Bioprocess strategies for enhanced performance in single-use bioreactors for biomolecule synthesis: A biokinetic approach. Food Bioengineering, 2024, 3(3): 337-351 DOI:10.1002/fbe2.12104

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aldridge, S. J. N. B. (2011). Mobile vaccine factories. Nature Biotechnology, 29(2), 99–100.

[2]

Bai, Y., Moo-Young, M., & Anderson, W. A. (2019). A mechanistic model for gas–liquid mass transfer prediction in a rocking disposable bioreactor. Biotechnology and Bioengineering, 116(8), 1986–1998.

[3]

Bluma, A., Höpfner, T., Prediger, A., Glindkamp, A., Beutel, S., & Scheper, T. (2011). Process analytical sensors and image-based techniques for single-use bioreactors. Wiley Online Library.

[4]

Cadwell, J. J. J. G. E., & News, B. (2018). Hollow fibers enhance protein expression: Mammalian systems excel in 3D conditions provided by hollow fiber bioreactors. Genetic Engineering & Biotechnology News, 38(8), 20–21.

[5]

Callaway, E. (2020). Russia’s fast-track coronavirus vaccine draws outrage over safety. Nature, 584(7821), 334–335.

[6]

Cervera, L., Fuenmayor, J., González-Domínguez, I., Gutiérrez-Granados, S., Segura, M. M., & Gòdia, F. (2015). Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures. Applied Microbiology and Biotechnology, 99, 9935–9949.

[7]

Chen, Y., Wang, Y., & Li, X. (2021). Application of antimicrobial peptides in food preservation: Mechanisms and challenges. Comprehensive Reviews in Food Science and Food Safety, 20(1), 449–469.

[8]

Conesa, A., Punt, P. J., van Luijk, N., & van den Hondel, C. A. (2001). The secretion pathway in filamentous fungi: A biotechnological view. Fungal Genetics and Biology: FG & B, 33(3), 155–171.

[9]

Dutta, D., & Das, M. D. (2017). Effect of carbon and nitrogen sources on mycelial biomass and biosynthesis of antifungal protein from Aspergillus giganteus MTCC 8408 in submerged fermentation. Journal of Scientific and Industrial Research, 76(06), 369–375.

[10]

Dutta, D., & Debnath, D. M. (2018). Biosynthesis of low molecular weight antifungal protein from aspergillus giganteus in batch fermentation and in-vitro assay. Biocontrol Science, 23(2), 41–51.

[11]

Eibl, R., & Eibl, D. (2019). Single-use technology in biopharmaceutical manufacture. John Wiley & Sons.

[12]

Eibl, R., Werner, S., & Eibl, D. (2010). Bag bioreactor based on wave-induced motion: Characteristics and applications. Advances in Biochemical Engineering/Biotechnology, 115, 55–87.

[13]

Glazyrina, J., Materne, E.-M., Dreher, T., Storm, D., Junne, S., Adams, T., Greller, G., & Neubauer, P. (2010). High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microbial Cell Factories, 9, 42.

[14]

Gome, G., Chak, B., Tawil, S., Shpatz, D., Giron, J., Brajzblat, I., Weizman, C., Grishko, A., Schlesinger, S., & Shoseyov, O. (2024). Cultivation of bovine mesenchymal stem cells on plant-based scaffolds in a macrofluidic single-use bioreactor for cultured meat. Foods (Basel, Switzerland), 13, 1361.

[15]

Grimmett, E., Al-Share, B., Alkassab, M. B., Zhou, R. W., Desai, A., Rahim, M., & Woldie, I. (2022). Cancer vaccines: Past, present and future. Discover Oncology, 13(1), 31.

[16]

Gupta, A., & Abraham, S. (2019). Bioactive peptides and proteins as functional ingredients in nutraceuticals and functional foods. Bioactive Molecules in Food (pp. 327–347). Elsevier.

[17]

Han, X., & Sha, M. J. E. A. N. (2017). High-density vero cell perfusion culture in BioBLU® 5p single-use vessels (Application Note No. 359).

[18]

Hellmuth, K., Pluschkell, S., Jung, J.-K., Ruttkowski, E., & Rinas, U. (1995). Optimization of glucose oxidase production by Aspergillus niger using genetic-and process-engineering techniques. Applied Microbiology and Biotechnology, 43, 978–984.

[19]

Hernández-Melchor, D. J., Cañizares-Villanueva, R. O., Terán-Toledo, J. R., López-Pérez, P. A., & Cristiani-Urbina, E. J. B. E. J. (2017). Hydrodynamic and mass transfer characterization of flat-panel airlift photobioreactors for the cultivation of a photosynthetic microbial consortium. Biochemical Engineering Journal, 128, 141–148.

[20]

Hillig, F., Pilarek, M., Junne, S., & Neubauer, P. (2014). Cultivation of marine microorganisms in single-use systems. Advances in Biochemical Engineering/Biotechnology, 138, 179–206.

[21]

Jacquemart, R., Vandersluis, M., Zhao, M., Sukhija, K., Sidhu, N., & Stout, J. (2016). A single-use strategy to enable manufacturing of affordable biologics. Computational and Structural Biotechnology Journal, 14, 309–318.

[22]

James, E., Van Zyl, W., Van Zyl, P., & Görgens, J. (2012). Recombinant hepatitis B surface antigen production in Aspergillus niger: Evaluating the strategy of gene fusion to native glucoamylase. Applied Microbiology and Biotechnology, 96, 385–394.

[23]

Jossen, V., Eibl, R., Broccard, G., & Eibl, D. (2023). Single-use systems in biopharmaceutical manufacture: State of the art and recent trends. In R. Pörtner (Ed.), Biopharmaceutical manufacturing cell engineering (Vol. 11). Springer.

[24]

Junne, S., & Neubauer, P. (2018). How scalable and suitable are single-use bioreactors? Current Opinion in Biotechnology, 53, 240–247.

[25]

Kalmbach, A., Bordás, R., Oncül, A. A., Thévenin, D., Genzel, Y., & Reichl, U. (2011). Experimental characterization of flow conditions in 2-and 20-l bioreactors with wave-induced motion. Biotechnology Progress, 27(2), 402–409.

[26]

Kiesslich, S., Kim, G. N., Shen, C. F., Kang, C. Y., & Kamen, A. A. (2021). Bioreactor production of rVSV-based vectors in Vero cell suspension cultures. Biotechnology and Bioengineering, 118(7), 2649–2659.

[27]

Kurt, T., Marbà-Ardébol, A.-M., Turan, Z., Neubauer, P., Junne, S., & Meyer, V. (2018). Rocking Aspergillus: Morphology-controlled cultivation of Aspergillus niger in a wave-mixed bioreactor for the production of secondary metabolites. Microbial Cell Factories, 17, 128.

[28]

Lang, Z., Yan, S., Xiong, Q., & Chen, G. (2023). WAVE-based intensified perfusion cell culture for fast process development. Biotechnology Letters, 45, 1117–1131.

[29]

Lavado-García, J., Cervera, L., & Gòdia, F. (2020). An alternative perfusion approach for the intensification of virus-like particle production in HEK293 cultures. Frontiers in Bioengineering and Biotechnology, 8, 617.

[30]

Lisini, D., Frigerio, S., Nava, S., & Pogliani, S. (2022). Stem cell production: Processes, practices, and regulation: Stem cell culture and expansion: Role of culture, types of cells, growth conditions, media nutrients, growth factors, growth phase cycle, Stem Cell Production: Processes, Practices and Regulations (pp. 125–158). Springer.

[31]

Löffelholz, C., Kaiser, S. C., Kraume, M., Eibl, R., & Eibl, D. (2014). Dynamic single-use bioreactors used in modern liter- and m3-scale biotechnological processes: Engineering characteristics and scaling up. Advances in Biochemical Engineering/Biotechnology, 138, 1–44.

[32]

Maltby, R., Lewis, W., Wright, S., Smith, A., & Chew, J. (2016). Multiphase CFD modelling of single-use-technology bioreactors for industrial biotechnology applications. Conference on fluid flow.

[33]

Mayrhofer, P., Castan, A., & Kunert, R. (2021). Shake tube perfusion cell cultures are suitable tools for the prediction of limiting SUBtrate, CSPR, bleeding strategy, growth and productivity behavior. Journal of Chemical Technology & Biotechnology, 96(10), 2930–2939.

[34]

Meuwly, F., Ruffieux, P.-A., Kadouri, A., & Von Stockar, U. (2007). Packed-bed bioreactors for mammalian cell culture: Bioprocess and biomedical applications. Biotechnology Advances, 25(1), 45–56.

[35]

Mikola, M., Seto, J., & Amanullah, A. (2007). Evaluation of a novel Wave Bioreactor® cellbag for aerobic yeast cultivation. Bioprocess and Biosystems Engineering, 30, 231–241.

[36]

Monteil, D. T., & Kuan, J. (2018). Bench-scale stirred-tank bioreactor for recombinant protein production in Chinese Hamster Ovary (CHO) cells in suspension. Methods in Molecular Biology (Clifton, N.J.), 1850, 133–145.

[37]

Oosterhuis, N. M., & van der Heiden, P. (2010). Mass transfer in the CELL-tainer® disposable bioreactor. Paper presented at the Cells and Culture: Proceedings of the 20th ESACT Meeting, Dresden, Germany, June 17–20 2007.

[38]

Peberdy, J. F., Wallis, G. L., & Archer, D. B. (2001). Protein secretion by fungi. In Applied mycology and biotechnology (1, pp. 73–114). Elsevier.

[39]

Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., & van den Hondel, C. (2002). Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology, 20(5), 200–206.

[40]

Running, J. A., & Bansal, K. (2016). Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates. Biotechnology and Bioengineering, 113(8), 1729–1735.

[41]

Sandoval, G., Teuber, T., & Schmitt, J. (2022). Biotechnological production of enzymes for food applications, Biotechnology of food and feed proteins (pp. 197–217). Springer.

[42]

Schirmer, C., Müller, J., Steffen, N., Werner, S., Eibl, R., & Eibl, D. (2020). How to produce mAbs in a cube-shaped stirred single-use bioreactor at 200 L scale. Methods in molecular biology (Clifton, N.J.), 2095, 169–186.

[43]

Seidel, S., Maschke, R. W., Kraume, M., Eibl, R., & Eibl, D. (2022). CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion. Frontiers in Chemical Engineering, 4, 1021416.

[44]

Slivac, I., Srcek, V. G., Radosevic, K., Kmetic, I., & Kniewald, Z. (2006). Aujeszky’s disease virus production in disposable bioreactor. Journal of Biosciences, 31, 363–368.

[45]

Smith, J., Johnson, R., & Patel, K. (2020). Optimization of single-use wave bioreactors for the production of food processing enzymes. Journal of Food Science, 85(5), 1345–1352.

[46]

Soerjawinata, W., Schlegel, K., Fuchs, N., Schüffler, A., Schirmeister, T., Ulber, R., & Kampeis, P. (2021). Applicability of a single-use bioreactor compared to a glass bioreactor for the fermentation of filamentous fungi and evaluation of the reproducibility of growth in pellet form. Engineering in Life Sciences, 21(5), 324–339.

[47]

Terrier, B., Courtois, D., Hénault, N., Cuvier, A., Bastin, M., Aknin, A., & Pétiard, V. (2007). Two new disposable bioreactors for plant cell culture: The wave and undertow bioreactor and the slug bubble bioreactor. Biotechnology and Bioengineering, 96(5), 914–923.

[48]

Tran, T. T., Lee, E. G., Lee, I. S., Woo, N. S., Han, S. M., Kim, Y. J., & Hwang, W. R. (2016). Hydrodynamic extensional stress during the bubble bursting process for bioreactor system design. Korea-Australia Rheology Journal, 28, 315–326.

[49]

Vázquez-Ramírez, D., Jordan, I., Sandig, V., Genzel, Y., & Reichl, U., biotechnology. (2019). High titer MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy with an ATF system. Applied Microbiology and Biotechnology, 103, 3025–3035.

[50]

Werner, S., Eibl, R., Lettenbauer, C., Röll, M., Eibl, D., De Jesus, M., Zhang, X., Stettler, M., Tissot, S., Bürki, C., Broccard, G., Kühner, M., Tanner, R., Baldi, L., Hacker, D., & Wurm, F. M. (2010). Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers—A Swiss contribution. Chimia, 64(11), 819–823.

[51]

Whitford, W. G., Petrich, M. A., & Flanagan, W. P. (2019). Environmental impacts of single-use systems (pp. 169–179).

[52]

Wierzchowski, K., Grabowska, I., & Pilarek, M. (2020). Efficient propagation of suspended HL-60 cells in a disposable bioreactor supporting wave-induced agitation at various Reynolds number. Bioprocess and Biosystems Engineering, 43, 1973–1985.

[53]

Yang, J., & Sui, L. (2012). [Development and application of perfusion culture producing seed cells in WAVE bioreactor]. Sheng wu gong cheng xue bao = Chinese Journal of Biotechnology, 28(3), 358–367.

[54]

Zhan, C., Hagrot, E., Brandt, L., & Chotteau, V. J. C. E. S. (2019). Study of hydrodynamics in wave bioreactors by computational fluid dynamics reveals a resonance phenomenon. Chemical Engineering Science, 193, 53–65.

[55]

Zhu, L., Chen, W., & Zhao, C. J. S. R. (2022). Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors. Scientific Reports, 12(1), 9596.

RIGHTS & PERMISSIONS

2024 The Author(s). Food Bioengineering published by John Wiley & Sons Australia, Ltd. on behalf of State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology.

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/