Exploring the potential of taro (Colocasia esculenta) starch: Recent developments in modification, health benefits, and food industry applications

Rakesh Kumar Gupta , Proshanta Guha , Prem Prakash Srivastav

Food Bioengineering ›› 2024, Vol. 3 ›› Issue (3) : 365 -379.

PDF
Food Bioengineering ›› 2024, Vol. 3 ›› Issue (3) : 365 -379. DOI: 10.1002/fbe2.12103
REVIEW ARTICLE

Exploring the potential of taro (Colocasia esculenta) starch: Recent developments in modification, health benefits, and food industry applications

Author information +
History +
PDF

Abstract

Taro is a tropical plant and an underutilized root crop that has a good source of carbohydrate. Taro tuber contains 70%–80% of starch on dry basis. This review highlights the extraction of taro starch, latest advancements in the modification such as physical, chemical and enzymatic modification of taro starch. Furthermore, after modification of taro starch, molecular weight and amylopectin branch chain length distribution, granular shape, percentage crystallinity, swelling and solubilization, pasting and thermal properties and in vitro digestibility of taro starch were significantly affected. Additionally, researchers have explored novel methods to modify the physicochemical characteristics of taro starch, enhancing its functionality as a thickening, gelling, and stabilizing agent in various food formulations. However, fabrication of nanoparticles from taro starch was also studies. Various health benefits of taro starch have been reported in this study. One significant health benefit of taro starch is its potential to improve blood sugar management. Furthermore, the versatility of taro starch in food applications has expanded, ranging from traditional staples to modern convenience foods. Its gluten-free nature makes it an attractive option for individuals with gluten sensitivity or celiac disease. Taro starch is increasingly incorporated into bakery products, snacks, noodles, and as a thickening agent in soups and sauces. The unique sensory attributes and nutritional profile of taro starch contribute to the development of novel, health-conscious food products that cater to evolving consumer preferences.

Keywords

food application / health benefits / starch modification / structural formation / taro

Cite this article

Download citation ▾
Rakesh Kumar Gupta, Proshanta Guha, Prem Prakash Srivastav. Exploring the potential of taro (Colocasia esculenta) starch: Recent developments in modification, health benefits, and food industry applications. Food Bioengineering, 2024, 3(3): 365-379 DOI:10.1002/fbe2.12103

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ačkar, Đ., Babić J., Šubarić D., Kopjar, M., & Miličević B. (2010). Isolation of starch from two wheat varieties and their modification with epichlorohydrin. Carbohydrate Polymers, 81(1), 76–82.

[2]

Agama-Acevedo, E., Garcia-Suarez, F. J., Gutierrez-Meraz, F., Sanchez-Rivera, M. M., San Martin, E., & Bello-Pérez, L. A. (2011). Isolation and partial characterization of Mexican taro (Colocasia esculenta L.) starch. Starch - Stärke, 63(3), 139–146.

[3]

Agbor-Egbe, T., & Rickard, J. E. (1991). Study on the factors affecting storage of edible aroids. Annals of Applied Biology, 119(1), 121–130.

[4]

Alam, F., Nawab, A., Lutfi, Z., & Haider, S. Z. (2021). Effect of non-starch polysaccharides on the pasting, gel, and gelation properties of taro (Colocasia esculenta) starch. Starch - Stärke, 73, 2000063.

[5]

Andrade, L. A., Barbosa, N. A., & Pereira, J. (2017). Extraction and properties of starches from the non-traditional vegetables yam and taro. Polímeros, 27(2), 151–157.

[6]

Arinola, S. O. (2019). Physicochemical properties of pregelatinized and microwave radiated White and red cocoyam (Colocasia esculenta) starches. Croatian Journal of Food Science and Technology, 11(2), 251–258.

[7]

Ashogbon, A. O. (2021). Roots and tubers: Functionality, health benefits, and applications, Handbook of Cereals, Pulses, Roots, and Tubers (pp. 531–550). CRC Press.

[8]

Campelo, P. H., Sant’Ana, A. S., & Pedrosa Silva Clerici, M. T. (2020). Starch nanoparticles: production methods, structure, and properties for food applications. Current Opinion in Food Science, 33, 136–140.

[9]

Carrión, M. G., Corripio, M. A. R., Contreras, J. V. H., Marrón, M. R., Olán, G. M., & Cázares, A. S. H. (2023). Optimization and characterization of taro starch, nisin, and sodium alginate-based biodegradable films: Antimicrobial effect in chicken meat. Poultry Science, 102(12), 103100.

[10]

Chakraborty, I., Pallen, S., Shetty, Y., Roy, N., & Mazumder, N. (2020). Advanced microscopy techniques for revealing molecular structure of starch granules. Biophysical Reviews, 12(1), 105–122.

[11]

Chen, C., Xie, M., & Liao, D.-M. (2022). The potential health benefits of resistant starch on human metabolism—A narrative review. International Journal of Integrated Medical Research, 9(4), 99–106.

[12]

Cheng, J. H., Ai, X., Ma, J., & Sun, D. W. (2024). Effects of cold plasma pretreatment combined with sodium periodate on property enhancement of dialdehyde starch prepared using native maize starch. International Journal of Biological Macromolecules, 267, 131435.

[13]

El- Dardiry, A., Ewis, A., & Abo-Srea, M. (2018). Impact of taro corms on functional low fat ice cream properties. Journal of Food and Dairy Sciences, 9(12), 399–402.

[14]

Das, A., & Sit, N. (2021). Modification of taro starch and starch nanoparticles by various physical methods and their characterization. Starch - Stärke, 73(5), 2000227.

[15]

Dash, D. R., Singh, S. K., & Singha, P. (2024). Bio-based composite active film/coating from deccan hemp seed protein, taro starch and leaf extract: Characterizations and application in grapes. Sustainable Chemistry and Pharmacy, 39, 101609.

[16]

Dayang, D. N., Samsudin, H., Utra, U., & Alias, A. K. (2020). Modification methods toward the production of porous starch: A review. Critical Reviews in Food Science and Nutrition, 61, 2841–2862.

[17]

Deepika, V., Jayaram Kumar, K., & Anima, P. (2013). Isolation and partial characterization of delayed releasing starches of colocasia species from Jharkhand, India. Carbohydrate Polymers, 96(1), 253–258.

[18]

Deka, D., & Sit, N. (2016). Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules, 92, 416–422.

[19]

Demiate, I. M., Bet, C. D., Ito, V. C., & Lacerda, L. G. (2022). Laboratory methods for starch extraction. Starchy Crops Morphology, Extraction, Properties and Applications, 1, 165–187.

[20]

Dini, C., Flores, S., Kupervaser, M. G., Sosa, C., Traffano-Schiffo, M. V., & Viña, S. Z. (2023). Non-cereals starch resources. Designing Gluten Free Bakery and Pasta Products, 1, 63–113.

[21]

Dorantes-Fuertes, M. G., López-Méndez, M. C., Martínez-Castellanos, G., Meléndez-Armenta, R. Á., & Jiménez-Martínez, H. E. (2024). Starch extraction methods in tubers and roots: A systematic review. Agronomy, 14, 865.

[22]

Du, Z., Li, X., Zhao, X., & Huang, Q. (2024). Multi-scale structural disruption induced by radio frequency air cold plasma accelerates enzymatic hydrolysis/hydroxypropylation of tapioca starch. International Journal of Biological Macromolecules, 260, 129572.

[23]

Food and Agriculture Organization. (2024). FAO crop production statistics. https://www.fao.org/faostat/en/#data/QCL/visualize

[24]

Flores-Silva, P. C., Ramírez-Vargas, E., Palma-Rodriguez, H., Neira-Velazquez, G., Hernandez-Hernandez, E., Mendez-Montealvo, G., & Sifuentes-Nieves, I. (2023). Impact of plasma-activated water on the supramolecular structure and functionality of small and large starch granules. International Journal of Biological Macromolecules, 253, 127083.

[25]

Fullagar, R., Field, J., Denham, T., & Lentfer, C. (2006). Early and mid holocene tool-use and processing of taro (Colocasia esculenta), yam (Dioscorea sp.) and other plants at kuk swamp in the highlands of Papua New Guinea. Journal of Archaeological Science, 33(5), 595–614.

[26]

Gao, Y., Liu, C., Wang, J., Lv, M., Liu, X., Zhang, X., Zhou, J., Li, X., Wang, Y., Dong, G., Huang, J., Liang, G., Yang, Z., Zhou, Y., & Yao, Y. (2024). Modified TAL expression in rice plant regulates yield components and grain quality in a n-rate dependent manner. Field Crops Research, 306, 109219.

[27]

Getachew, A., Yilma, Z., & Abrha, S. (2020). Acetylation and evaluation of Taro Boloso-I starch as directly compressible excipient in tablet formulation. Advances in Pharmacological and Pharmaceutical Sciences, 2020, 1–10.

[28]

Golkar, A., Milani, J. M., Motamedzadeghan, A., & Kenari, R. E. (2023). Physicochemical, structural, and rheological characteristics of corn starch after thermal-ultrasound processing. Food Science and Technology International, 29(2), 168–180.

[29]

Gupta, R. K., Guha, P., & Srivastav, P. P. (2022). Natural polymers in bio-degradable/edible film: A review on environmental concerns, cold plasma technology and nanotechnology application on food packaging—A recent trends. Food Chemistry Advances, 1, 100135.

[30]

Gupta, R. K., Guha, P., & Srivastav, P. P. (2023). Effect of high voltage dielectric barrier discharge (DBD) atmospheric cold plasma treatment on physicochemical and functional properties of taro (Colocasia esculenta) starch. International Journal of Biological Macromolecules, 253(P2), 126772.

[31]

Gupta, R. K., Guha, P., & Srivastav, P. P. (2024a). Dielectric barrier discharge plasma: A green and novel method to change the structure of taro peel starch and improve the physicochemical properties of taro peel starch films. Plasma Processes and Polymers, 21, e2400047.

[32]

Gupta, R. K., Guha, P., & Srivastav, P. P. (2024b). Insights into the physicochemical, crystalline, multistructural, thermal and digestibility behavior of taro starch (Colocasia esculenta) modified by cold plasma treatment with high voltage dielectric barrier discharge (HVDBD): An alternative technique for chemical modification of starch and environmental sustainability. Journal of Cleaner Production, 461, 142710.

[33]

Gupta, R. K., Guha, P., & Srivastav, P. P. (2024c). Physical action of nonthermal cold plasma technology for starch modification. Food Physics, 1, 100011.

[34]

Gurung, N., Ray, S., Bose, S., & Rai, V. (2013). A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International, 2013, 329121.

[35]

Haq, F., Yu, H., Wang, L., Teng, L., Haroon, M., Khan, R. U., Mehmood, S., Bilal-Ul-Amin, B., Ullah, R. S., Khan, A., & Nazir, A. (2019). Advances in chemical modifications of starches and their applications. Carbohydrate Research, 476, 12–35.

[36]

Hashim, S. O. (2020). Starch-modifying enzymes. Advances in Biochemical Engineering/Biotechnology, 172, 221–244.

[37]

He, M., Jiang, H., Kong, H., Li, C., Gu, Z., Ban, X., & Li, Z. (2023). Engineering starch by enzymatic structure design for versatile applications in food industries: A critical review. Systems Microbiology and Biomanufacturing, 3, 12–27.

[38]

Hernández-Nolasco, Z., Ríos-Corripio, M. A., Hidalgo-Contreras, J. V., Castellano, P. H., Rubio-Rosas, E., & Hernández-Cázares, A. S. (2024). Optimization of sodium alginate, taro starch and lactic acid based biodegradable films: Antimicrobial effect on a meat product. LWT, 192, 115718.

[39]

Hoover, R. (2000). Acid-treated starches. Food Reviews International, 16(3), 369–392.

[40]

Hua, X., & Yang, R. (2015). Enzymes in starch processing. Enzymes in Food and Beverage Processing, 12, 155–186.

[41]

Huang, G., Wang, F., Yang, R., Wang, Z.-C., Fang, Z., Lin, Y., Zhu, Y., & Bai, L. (2024). Characterization of the physicochemical properties of lipu Colocasia esculenta (L.) Schott starch: A potential new food ingredient. International Journal of Biological Macromolecules, 254, 127803.

[42]

Hui, G., Zhu, P., & Wang, M. (2024). Structure and functional properties of taro starch modified by dry heat treatment. International Journal of Biological Macromolecules, 261, 129702.

[43]

Jane, J., Shen, L., Chen, J., Lim, S., Kasemsuwan, T., & Nip, W. (1992). Physical and chemical studies of taro starches and flours. Cereal Chemistry, 69(5), 528–535.

[44]

Jiang, S., Dai, L., Qin, Y., Xiong, L., & Sun, Q. (2016). Preparation and characterization of octenyl succinic anhydride modified taro starch nanoparticles. PLoS One, 11(2), e0150043.

[45]

Kaavya, R., Pandiselvam, R., Gavahian, M., Tamanna, R., Jain, S., Dakshayani, R., Khanashyam, A. C., Shrestha, P., Kothakota, A., Arun Prasath, V., Mahendran, R., Kumar, M., Khaneghah, A. M., Nayik, G. A., Dar, A. H., Uddin, J., Ansari, M. J., & Hemeg, H. A. (2022). Cold plasma: A promising technology for improving the rheological characteristics of food. Critical Reviews in Food Science and Nutrition, 63, 11370–11384.

[46]

Kim, H. S., Hwang, D. K., Kim, B. Y., & Baik, M. Y. (2012). Cross-linking of corn starch with phosphorus oxychloride under ultra high pressure. Food Chemistry, 130(4), 977–980.

[47]

Kumar, K., & Belur, P. D. (2018). A novel enzymatic process to produce oxalate depleted starch from taro. Starch - Stärke, 70, 1700352.

[48]

Lack, S., Dulong, V., Picton, L., Cerf, D. L., & Condamine, E. (2007). High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: A proposal for the reaction mechanism. Carbohydrate Research, 342(7), 943–953.

[49]

Leandro, G. C., Laroque, D. A., Monteiro, A. R., Carciofi, B. A. M., & Valencia, G. A. (2023). Current status and perspectives of starch powders modified by cold plasma: A review. Journal of Polymers and the Environment, 32(2), 510–523.

[50]

LeCorre, D., Bras, J., & Dufresne, A. (2012). Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydrate Polymers, 87(1), 658–666.

[51]

Lehtonen, P. (1988). Effect of method of solution on observed molecular weight distribution of barley starch and starch derivatives in size exclusion chromatography. Chromatographia, 26, 157–159.

[52]

Li, C., Liao, H., Gao, H., & Cheng, F. (2024). Enhancing interface compatibility in high-filled coal gangue/polyethylene composites through silane coupling agent-mediated interface modification. Composites Science and Technology, 251, 110546.

[53]

Ma, S., & Jiang, H. (2024). The effect of cold plasma on starch: Structure and performance. Carbohydrate Polymers, 340, 122254.

[54]

Van Der Maarel, M. J. E. C., Van Der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2), 137–155.

[55]

Maniglia, B. C., Castanha, N., Rojas, M. L., & Augusto, P. E. (2021). Emerging technologies to enhance starch performance. Current Opinion in Food Science, 37, 26–36.

[56]

Mba, C. J., & Agu, H. O. (2021). Developments on the bioactive compounds and food uses of the tubers: Colocasia esculenta (L) schott (Taro) and xanthosoma sagittifolium (L) schott (Tannia). Asian Food Science Journal, 20, 101–112.

[57]

Miao, M., & Bemiller, J. N. (2023). Enzymatic approaches for structuring starch to improve functionality. Annual Review of Food Science and Technology, 14, 271–295.

[58]

Mitharwal, S., Kumar, A., Chauhan, K., & Taneja, N. K. (2022). Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review. Food Chemistry, 383, 132406.

[59]

Mweta, D. E., Labuschagne, M. T., Bonnet, S., Swarts, J., & Saka, J. D. (2010). Isolation and physicochemical characterisation of starch from cocoyam (Colocasia esculenta) grown in Malawi. Journal of the Science of Food and Agriculture, 90(11), 1886–1896.

[60]

Nagar, C. K., Dash, S. K., Rayaguru, K., Pal, U. S., & Nedunchezhiyan, M. (2021). Isolation, characterization, modification and uses of taro starch: A review. International Journal of Biological Macromolecules, 192, 574–589.

[61]

Nagnath, S. (2023). Tuber crop starches importance, properties and applications: Review. International Journal of Food and Fermentation Technology, 13(2), 101–112.

[62]

Pachuau, L., Dutta, R. S., Devi, T. B., Deka, D., & Hauzel, L. (2018). Taro starch (Colocasia esculenta) and citric acid modified taro starch as tablet disintegrating agents. International Journal of Biological Macromolecules, 118, 397–405.

[63]

Punia Bangar, S., Ashogbon, A. O., Singh, A., Chaudhary, V., & Whiteside, W. S. (2022). Enzymatic modification of starch: A green approach for starch applications. Carbohydrate Polymers, 287, 119265.

[64]

Rincón-Aguirre, A., Bello Pérez, L. A., Mendoza, S., del Real, A., & Rodríguez García, M. E. (2018). Physicochemical studies of taro starch chemically modified by acetylation, phosphorylation, and succinylation. Starch - Stärke, 70, 1700066.

[65]

Rosales-Chimal, S., Navarro-Cortez, R. O., Bello-Perez, L. A., Vargas-Torres, A., & Palma-Rodríguez, H. M. (2023). Optimal conditions for anthocyanin extract microencapsulation in taro starch: Physicochemical characterization and bioaccessibility in gastrointestinal conditions. International Journal of Biological Macromolecules, 227, 83–92.

[66]

Saeid, A., Akter, F., Ali, M. A., & Rahman, M. H. (2024). Enzymatic modification of starch: Amylases and pullulanase. Advanced Research in Starch, 1, 95–115.

[67]

Shah, Y. A., Saeed, F., Afzaal, M., Waris, N., Ahmad, S., Shoukat, N., & Ateeq, H. (2022). Industrial applications of taro (Colocasia esculenta) as a novel food ingredient: A review. Journal of Food Processing and Preservation, 46, e16951.

[68]

Shaheryar, M., Afzaal, M., Nosheen, F., Imran, A., Islam, F., Noreen, R., Shehzadi, U., Shah, M. A., & Rasool, A. (2023). Functional exploration of taro starch (Colocasia esculenta) supplemented yogurt. Food Science & Nutrition, 11(6), 2697–2707.

[69]

Simsek, S., & El, S. N. (2012). Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Carbohydrate Polymers, 90(3), 1204–1209.

[70]

Singh, H., Blennow, A., Gupta, A. D., Kaur, P., Dhillon, B., Sodhi, N. S., & Dubey, P. K. (2022). Pulsed light, pulsed electric field and cold plasma modification of starches: Technological advancements & effects on functional properties. Journal of Food Measurement and Characterization, 16, 4092–4109.

[71]

Singla, D., Singh, A., Dhull, S. B., Kumar, P., Malik, T., & Kumar, P. (2020). Taro starch: Isolation, morphology, modification and novel applications concern—A review. International Journal of Biological Macromolecules, 163, 1283–1290.

[72]

Sinhmar, A., Pathera, A. K., Sharma, S., Nehra, M., Thory, R., & Nain, V. (2023). Impact of various modification methods on physicochemical and functional properties of starch: A review. Starch - Stärke, 75, 2200117.

[73]

Sit, N., Deka, S. C., & Misra, S. (2015). Optimization of starch isolation from taro using combination of enzymes and comparison of properties of starches isolated by enzymatic and conventional methods. Journal of Food Science and Technology, 52(7), 4324–4332.

[74]

Thomaz, L., Ito, V. C., Malucelli, L. C., da Silva Carvalho Filho, M. A., Demiate, I. M., Bet, C. D., Marinho, M. T., Schnitzler, E., & Lacerda, L. G. (2020). Effects of dual modification on thermal, structural and pasting properties of taro (Colocasia esculenta L.) starch. Journal of Thermal Analysis and Calorimetry, 139(5), 3123–3132.

[75]

Wang, N., Dai, J., Miao, D., Li, C., Yang, X., Shu, Q., Zhang, Y., Dai, Y., Hou, H., & Xu, S. (2023). Influence of enzymatic modification on the basis of improved extrusion cooking technology (IECT) on the structure and properties of corn starch. International Journal of Biological Macromolecules, 253, 127274.

[76]

Winarti, C., Widaningrum, I. S., Surono, I. S., & Uswah, M. (2019). Effect of acid and hydrolysis duration on the characteristics of arrowroot and taro starch nanoparticles. IOP Conference Series: Earth and Environmental Science, 309(1), 012039.

[77]

Witasari, L. D., Nisrina, S., Yani, A. I. T., Heryadi, A. A., & Pranoto, Y. (2024). Characterization of porous starch produced from arrowroot (Maranta arundinacea L.) by enzymatic hydrolysis with α-amylase and glucoamylase. Carbohydrate Polymer Technologies and Applications, 7, 100445.

[78]

Wongsagonsup, R., Nateelerdpaisan, T., Gross, C., Suphantharika, M., Belur, P. D., Agoo, E. M. G., & Janairo, J. I. B. (2021). Physicochemical properties and in vitro digestibility of flours and starches from taro cultivated in different regions of Thailand. International Journal of Food Science & Technology, 56(5), 2395–2406.

[79]

Yuniar, A., Sofiah, M., & Meilianti, M. (2020). Modification of starch from taro tubers with hydrolysis acid as the adhesive. Journal of Physics: Conference Series, 1500(1), 012056.

[80]

Zeng, F. K., Liu, H., & Liu, G. (2014). Physicochemical properties of starch extracted from Colocasia esculenta (L.) schott (Bun-long taro) grown in Hunan, China. Starch - Stärke, 66, 142–148.

[81]

Zhang, B., Tan, C., Zou, F., Sun, Y., Shang, N., & Wu, W. (2022). Impacts of cold plasma technology on sensory, nutritional and safety quality of food: A review. Foods, 11, 2818.

RIGHTS & PERMISSIONS

2024 The Author(s). Food Bioengineering published by John Wiley & Sons Australia, Ltd. on behalf of State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology.

AI Summary AI Mindmap
PDF

2713

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/