Effect of sodium bicarbonate with ultrasound on reduced-salt Chaozhou beef meatballs quality: Physicochemical and sensory properties

Qian You , Runxiang Mao , Yukun Yuan , Ling Zhang , Xingguo Tian , Xiaoyan Xu

Food Bioengineering ›› 2024, Vol. 3 ›› Issue (3) : 301 -313.

PDF
Food Bioengineering ›› 2024, Vol. 3 ›› Issue (3) : 301 -313. DOI: 10.1002/fbe2.12099
RESEARCH ARTICLE

Effect of sodium bicarbonate with ultrasound on reduced-salt Chaozhou beef meatballs quality: Physicochemical and sensory properties

Author information +
History +
PDF

Abstract

This study aimed to create a reduced-salt version of Chaozhou beef meatballs (CBMs) by employing ultrasound treatment (0 and 30 min) combined with sodium bicarbonate (0%, 0.15%, and 0.3%). The ultrasound-assisted sodium bicarbonate treatment significantly enhanced pH, salt-soluble protein solubility (SSP), water-holding capacity (WHC), and storage modulus (G’) of the CBMs (p < 0.05). Specifically, after treatment, the increase in pH value promoted the solubilization of SSP, with the content increasing from 28.23% to 56.53%. Moreover, the initial relaxation times (T21 and T22) were shortened, indicating a decrease in water mobility, as evidenced by an increase in WHC from 85% to 87%. Furthermore, the ultrasound treatment effectively facilitated protein unfolding, increased β-sheet secondary structure content, augmented hydrogen and disulfide bond proportions, and resulted in a denser and more uniform gel structure. Consequently, the hardness of the CBMs was significantly improved (p < 0.05). Sensory evaluation revealed that the treated reduced-salt CBMs were comparable to those produced by conventional methods. Therefore, combining sodium bicarbonate with ultrasound treatment is a viable approach to mitigate the negative effects of reduced salt content and produce high-quality reduced-salt CBMs.

Keywords

Chaozhou beef meatballs / reduced-salt / sodium bicarbonate / ultrasound

Cite this article

Download citation ▾
Qian You, Runxiang Mao, Yukun Yuan, Ling Zhang, Xingguo Tian, Xiaoyan Xu. Effect of sodium bicarbonate with ultrasound on reduced-salt Chaozhou beef meatballs quality: Physicochemical and sensory properties. Food Bioengineering, 2024, 3(3): 301-313 DOI:10.1002/fbe2.12099

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ai, M., Zhou, Q., Guo, S., Ling, Z., Zhou, L., Fan, H., Cao, Y., & Jiang, A. (2019). Effects of tea polyphenol and Ca(OH)2 on the intermolecular forces and mechanical, rheological, and microstructural characteristics of duck egg white gel. Food Hydrocolloids, 94, 11–19.

[2]

Alarcon-Rojo, A. D., Carrillo-Lopez, L. M., Reyes-Villagrana, R., Huerta-Jiménez, M., & Garcia-Galicia, I. A. (2019). Ultrasound and meat quality: A review. Ultrasonics Sonochemistry, 55, 369–382.

[3]

Amiri, A., Sharifian, P., & Soltanizadeh, N. (2018). Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins. International Journal of Biological Macromolecules, 111, 139–147.

[4]

Caraveo-Suarez, R. O., Garcia-Galicia, I. A., Santellano-Estrada, E., Carrillo-Lopez, L. M., Huerta-Jimenez, M., Vargas-Bello-Pérez, E., & Alarcon-Rojo, A. D. (2021). High-Frequency focused ultrasound on quality traits of bovine triceps brachii muscle. Foods, 10(9), 2074.

[5]

Carbonaro, M., & Nucara, A. (2010). Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids, 38, 679–690.

[6]

Chen, L., & Opara, U. L. (2013). Approaches to analysis and modeling texture in fresh and processed foods—A review. Journal of Food Engineering, 119(3), 497–507.

[7]

Cortez-Trejo, M. C., Gaytán-Martínez, M., Reyes-Vega, M. L., & Mendoza, S. (2021). Protein-gum-based gels: Effect of gum addition on microstructure, rheological properties, and water retention capacity. Trends in Food Science & Technology, 116, 303–317.

[8]

Dai, H., Chen, X., Peng, L., Ma, L., Sun, Y., Li, L., Wang, Q., & Zhang, Y. (2020). The mechanism of improved myosin gel properties by low dose rosmarinic acid addition during gel formation. Food Hydrocolloids, 106, 105869.

[9]

Dalvi-Isfahan, M., Hamdami, N., Xanthakis, E., & Le-Bail, A. (2017). Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. Journal of Food Engineering, 195, 222–234.

[10]

Desmond, E. (2006). Reducing salt: A challenge for the meat industry. Meat Science, 74(1), 188–196.

[11]

Fallavena, L. P., Ferreira Marczak, L. D., & Mercali, G. D. (2020). Ultrasound application for quality improvement of beef biceps femoris physicochemical characteristics. LWT, 118, 108817.

[12]

Inguglia, E. S., Zhang, Z., Tiwari, B. K., Kerry, J. P., & Burgess, C. M. (2017). Salt reduction strategies in processed meat products—A review. Trends in Food Science & Technology, 59, 70–78.

[13]

Jin, G., Liu, Y., Zhang, Y., Li, C., He, L., Zhang, Y., Wang, Y., & Cao, J. (2023). Underlying formation mechanisms of ultrasound-assisted brined porcine meat: The role of physicochemical modification, myofiber fragmentation and histological organization. Ultrasonics Sonochemistry, 94, 106318.

[14]

Kang, Z.-L., Hu, S.-J., Zhu, D.-Y., & Ma, H. (2018). Effect of sodium chloride and processing methods on protein aggregation, physical–chemical and rheological properties of pork batters. International Journal of Food Engineering, 14(5–6), 20170319.

[15]

Kang, Z.-L., Shang, X.-Y., Li, Y.-P., & Ma, H.-J. (2022). Effect of ultrasound-assisted sodium bicarbonate treatment on gel characteristics and water migration of reduced-salt pork batters. Ultrasonics Sonochemistry, 89, 106150.

[16]

Kang, Z.-L., Zhang, X., Li, K., Li, Y., Lu, F., Ma, H., Song, Z., Zhao, S., & Zhu, M. (2021). Effects of sodium bicarbonate on the gel properties, water distribution and mobility of low-salt pork batters. LWT, 139, 110567.

[17]

Ko, K. Y., Mendonca, A. F., & Ahn, D. U. (2008). Influence of zinc, sodium bicarbonate, and citric acid on the antibacterial activity of ovotransferrin against Escherichia coli O157:H7 and listeria monocytogenes in model systems and ham. Poultry Science, 87(12), 2660–2670.

[18]

LeMaster, M. N., Chauhan, S. S., Wick, M. P., Clark, D. L., & England, E. M. (2019). Potassium carbonate improves fresh pork quality characteristics. Meat Science, 156, 222–230.

[19]

Li, Y., Zhang, X., Lu, F., & Kang, Z. L. (2021). Effect of sodium bicarbonate and sodium chloride on aggregation and conformation of pork myofibrillar protein. Food Chemistry, 350, 129233.

[20]

Li, Y., Zou, X. L., Kang, Z. L., & Ma, H. J. (2022). Effect of sodium bicarbonate on techno-functional and rheological properties of pale, soft, and exudative (PSE) meat batters. Meat Science, 194, 108990.

[21]

Liu, R., Liu, Q., Xiong, S., Fu, Y., & Chen, L. (2017). Effects of high intensity unltrasound on structural and physicochemical properties of myosin from silver carp. Ultrasonics Sonochemistry, 37, 150–157.

[22]

Liu, X., Sun, X., Chen, X., Zheng, K., Li, J., & Li, X. (2023). Effect of slightly acidic electrolyzed water (SAEW) combined with ultrasound sterilization on quality of bigeye tuna (Thunnus obesus) during cryogenic storage. Journal of Food Composition and Analysis, 115, 104999.

[23]

Ma, Y., Shan, A., Wang, R., Zhao, Y., & Chi, Y. (2021). Characterization of egg white powder gel structure and its relationship with gel properties influenced by pretreatment with dry heat. Food Hydrocolloids, 110, 106149.

[24]

Mad-Ali, S., Masniyom, P., & Benjakul, S. (2018). Characteristics and properties of goat meat gels as affected by setting temperatures. Food Chemistry, 268, 257–263.

[25]

Mao, J., Fu, J., Zhu, Z., Cao, Z., Zhang, M., Yuan, Y., Chai, T., & Chen, Y. (2023). Flavor characteristics of semi-dried yellow croaker (Pseudosciaena crocea) with KCl and ultrasound under sodium-reduced conditions before and after low temperature vacuum heating. Food Chemistry, 426, 136574.

[26]

Meng, X., Wu, D., Zhang, Z., Wang, H., Wu, P., Xu, Z., Gao, Z., Mintah, B. K., & Dabbour, M. (2022). An overview of factors affecting the quality of beef meatballs: Processing and preservation. Food Science & Nutrition, 10(6), 1961–1974.

[27]

Mente, A., O’Donnell, M., Rangarajan, S., McQueen, M., Dagenais, G., Wielgosz, A., Lear, S., Ah, S. T. L., Wei, L., Diaz, R., Avezum, A., Lopez-Jaramillo, P., Lanas, F., Mony, P., Szuba, A., Iqbal, R., Yusuf, R., Mohammadifard, N., Khatib, R., … Yusuf, S. (2018). Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: A community-level prospective epidemiological cohort study. The Lancet, 392(10146), 496–506.

[28]

Miranda, M. P. (2024). Comparison of the effect of sodium chloride concentration on protein determination: Bradford and Biuret methods. Analytical Biochemistry, 687, 115450.

[29]

Ozel, B., & Oztop, M. H. (2021). A quick look to the use of time domain nuclear magnetic resonance relaxometry and magnetic resonance imaging for food quality applications. Current Opinion in Food Science, 41, 122–129.

[30]

Ran, X., Lou, X., Zheng, H., Gu, Q., & Yang, H. (2022). Improving the texture and rheological qualities of a plant-based fishball analogue by using konjac glucomannan to enhance crosslinks with soy protein. Innovative Food Science & Emerging Technologies, 75, 102910.

[31]

Ren, Z., Cui, Y., Wang, Y., Shi, L., Yang, S., Hao, G., Qiu, X., Wu, Y., Zhao, Y., & Weng, W. (2022). Effect of ionic strength on the structural properties and emulsion characteristics of myofibrillar proteins from hairtail (Trichiurus haumela). Food Research International, 157, 111248.

[32]

Saleem, R., Hasnain, A., & Ahmad, R. (2015). Changes in some biochemical indices of stability of broiler chicken actomyosin at different levels of sodium bicarbonate in presence and absence of sodium chloride. International Journal of Food Properties, 18(6), 1373–1384.

[33]

Sano, T., Noguchi, S. F., Tsuchiya, T., & Matsumoto, J. J. (1988). Dynamic viscoelastic behavior of natural actomyosin and myosin during thermal gelation. Journal of Food Science, 53(3), 924–928.

[34]

Shi, H., Ali Khan, I., Zhang, R., Zou, Y., Xu, W., & Wang, D. (2022). Evaluation of ultrasound-assisted L-histidine marination on beef M. semitendinosus: Insight into meat quality and actomyosin properties. Ultrasonics Sonochemistry, 85, 105987.

[35]

Shi, H., Zhou, T., Wang, X., Zou, Y., Wang, D., & Xu, W. (2021). Effects of the structure and gel properties of myofibrillar protein on chicken breast quality treated with ultrasound-assisted potassium alginate. Food Chemistry, 358, 129873.

[36]

Sikes, A. L., Mawson, R., Stark, J., & Warner, R. (2014). Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound. Ultrasonics Sonochemistry, 21(6), 2138–2143.

[37]

Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506.

[38]

Sow, L. C., Nicole Chong, J. M., Liao, Q. X., & Yang, H. (2018). Effects of κ-carrageenan on the structure and rheological properties of fish gelatin. Journal of Food Engineering, 239, 92–103.

[39]

Stadnik, J., & Dolatowski, Z. J. (2011). Influence of sonication on Warner–Bratzler shear force, colour and myoglobin of beef (M. semimembranosus). European Food Research and Technology, 233, 553–559.

[40]

Taha, A., Ahmed, E., Ismaiel, A., Ashokkumar, M., Xu, X., Pan, S., & Hu, H. (2020). Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science & Technology, 105, 363–377.

[41]

Vidal, V. A. S., Lorenzo, J. M., Munekata, P. E. S., & Pollonio, M. A. R. (2021). Challenges to reduce or replace NaCl by chloride salts in meat products made from whole pieces—A review. Critical Reviews in Food Science and Nutrition, 61(13), 2194–2206.

[42]

Wang, K., Li, Y., Zhang, Y., Sun, J., & Qiao, C. (2022). Preheating and high-intensity ultrasound synergistically affect the physicochemical, structural, and gelling properties of chicken wooden breast myofibrillar protein. Food Research International, 162, 111975.

[43]

Wang, Q., Gu, C., Wei, R., Luan, Y., Liu, R., Ge, Q., Yu, H., & Wu, M. (2023). Enhanced gelling properties of myofibrillar protein by ultrasound-assisted thermal-induced gelation process: Give an insight into the mechanism. Ultrasonics Sonochemistry, 94, 106349.

[44]

Wu, D., Guo, J., Wang, X., Yang, K., Wang, L., Ma, J., Zhou, Y., & Sun, W. (2021). The direct current magnetic field improved the water retention of low-salt myofibrillar protein gel under low temperature condition. LWT, 151, 112034.

[45]

Xi, L., Sun, Y., Jiang, S., Wen, C., & Ding, W. (2023). Evaluation of effects of ultrasound-assisted curing on the flavor of Chinese bacon. Ultrasonics Sonochemistry, 96, 106424.

[46]

Xing, T., Xu, Y., Qi, J., Xu, X., & Zhao, X. (2021). Effect of high intensity ultrasound on the gelation properties of wooden breast meat with different NaCl contents. Food Chemistry, 347, 129031.

[47]

Xiong, G., Fu, X., Pan, D., Qi, J., Xu, X., & Jiang, X. (2020). Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat. Ultrasonics Sonochemistry, 60, 104808.

[48]

Yu, J., Wang, Y., Li, D., & Wang, L. (2022). Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl. Food Hydrocolloids, 123, 107113.

[49]

Zhang, R., Zhou, R., Pan, W., Lin, W., Zhang, X., Li, M., Li, J., Niu, F., & Li, A. (2017). Salting-in effect on muscle protein extracted from giant squid (Dosidicus gigas). Food Chemistry, 215, 256–262.

[50]

Zhang, T., Wang, J., Feng, J., Liu, Y., Suo, R., Jin, J., & Wang, W. (2022). Ultrasonic pretreatment improves the gelation properties of low-salt Penaeus vannamei (Litopenaeus vannamei) surimi. Ultrasonics Sonochemistry, 86, 106031.

[51]

Zhang, X., Guo, Q., & Shi, W. (2023). Ultrasound-assisted processing: Changes in gel properties, water-holding capacity, and protein aggregation of low-salt Hypophthalmichthys molitrix surimi by soy protein isolate. Ultrasonics Sonochemistry, 92, 106258.

[52]

Zhang, Z., Regenstein, J. M., Zhou, P., & Yang, Y. (2017). Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel. Ultrasonics Sonochemistry, 34, 960–967.

[53]

Zhou, C.-Y., Xia, Q., He, J., Sun, Y.-Y., Dang, Y.-L., Ou, C.-R., Pan, D. D., Cao, J. X., & Zhou, G. H. (2021). Improvement of ultrasound-assisted thermal treatment on organoleptic quality, rheological behavior and flavor of defective dry-cured ham. Food Bioscience, 43, 101310.

[54]

Zhou, Y., Liu, J. J. H., Kang, Y., Cui, H., & Yang, H. (2021). Effects of acid and alkaline treatments on physicochemical and rheological properties of tilapia surimi prepared by pH shift method during cold storage. Food Research International, 145, 110424.

[55]

Zhu, D., Kang, Z.-L., Ma, H., Xu, X.-L., & Zhou, G.-H. (2018). Effect of sodium chloride or sodium bicarbonate in the chicken batters: A physico-chemical and Raman spectroscopy study. Food Hydrocolloids, 83, 222–228.

[56]

Zou, Y., Shi, H., Xu, P., Jiang, D., Zhang, X., Xu, W., & Wang, D. (2019). Combined effect of ultrasound and sodium bicarbonate marination on chicken breast tenderness and its molecular mechanism. Ultrasonics Sonochemistry, 59, 104735.

RIGHTS & PERMISSIONS

2024 The Author(s). Food Bioengineering published by John Wiley & Sons Australia, Ltd. on behalf of State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology.

AI Summary AI Mindmap
PDF

358

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/