An individuality-oriented interactive architectural system for children with emotional/behavioral disorders

Ye Zhang , Xingwei Xiang , Kezhen Chen , Zhen Xu

Front. Archit. Res. ›› 2024, Vol. 13 ›› Issue (6) : 1423 -1434.

PDF (4474KB)
Front. Archit. Res. ›› 2024, Vol. 13 ›› Issue (6) : 1423 -1434. DOI: 10.1016/j.foar.2024.06.004
RESEARCH ARTICLE

An individuality-oriented interactive architectural system for children with emotional/behavioral disorders

Author information +
History +
PDF (4474KB)

Abstract

Interactive architecture designs enable spatial forms to respond to human activities by integrating technology, programming, and spatial experience. Most interactive programs respond to established actions in a uniform manner and do not take into account the individual emotional state of the user. However, the emotional states of children and adolescents with emotional/behavioral disorders play a crucial role in their interactions, and uniform spatial responses cannot be adapted to different people. This study developed an interactive architectural system for children with emotional/behavioral disorders based on individual emotion recognition and corresponding spatial transformation. The method proposed in this study enables individuals in certain emotional categories, such as extroverted, introverted, aggressive, and defensive states, to receive matching spatial responses. Using this individuality-oriented interactive system, we built a practical pavilion in a primary school in Tianjin. This study demonstrates how combining individual emotions and spatial variations opens up new design possibilities for interactive architecture.

Keywords

Interactive architecture design / Children with EBDs / Adaptive spatial prototype / Emotion recognition / Practical interactive pavilion

Cite this article

Download citation ▾
Ye Zhang, Xingwei Xiang, Kezhen Chen, Zhen Xu. An individuality-oriented interactive architectural system for children with emotional/behavioral disorders. Front. Archit. Res., 2024, 13(6): 1423-1434 DOI:10.1016/j.foar.2024.06.004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auvinet, E. , Multon, F. , Aubin, C.E. , Meunier, J. , Raison, M. , 2015. Detection of gait cycles in treadmill walking using a Kinect. Gait Posture 41 (2), 722- 725.

[2]

Bilesan, A. , Komizunai, S. , Tsujita, T. , Konno, A. , 2021. Improved 3D human motion capture using kinect skeleton and depth sensor. J. Robot. Mechatron. 33, 1408- 1422.

[3]

Bullivant, L. , 2005. Jason Bruges: light and space explorer. Architect. Des 75 (1), 79- 81.

[4]

Calderon, C. , 2009. Interactive Architecture Design. Harvard University, Cambridge.

[5]

Deyong, S. , 2017. Walking City: Archigram.Companion to the History of Architecture. Wiley-Blackwell, Hoboken, pp. 1-12.

[6]

Droege, P. , 1997. Intelligent Environments: Spatial Aspects of the Information Revolution. North Holland, Amsterdam.

[7]

Eastman, C.M. , 1972. Adaptive Conditional Architecture. Carnegie-Mellon University, Pittsburgh.

[8]

Ehrenreich-May, J. Kennedy, S.M. , 2021. Applications of the Unified Protocols for Transdiagnostic Treatment of Emotional Disorders in Children and Adolescents. Oxford University Press, Oxford.

[9]

Ghandi, M. , Blaisdell, M. , Ismail, M. , 2021. Embodied empathy: using affective computing to incarnate human emotion and cognition in architecture. Int. J. Architect. Comput. 19 (4), 532- 552.

[10]

Jiang, Z. , Wang, D. , Xu, H. , Zhang, A. , Zhao, Q. , Yan, J. , Wang, X. , Zhang, W. , Li, Y. , Yang, K. , Hu, S. , Cui, Y. , Li, Y. , 2023. Diagnostic efficiency and psychometric properties of CBCL DSM-oriented scales in a large sample of Chinese school-attending students aged 5-16. Asian Journal of Psychiatry 88 (3), 103724.

[11]

Kauffman, J. , Hallahan, D. , Pullen, P. , 2017. Handbook of Special Education, second ed. Routledge, New York.

[12]

Kilian, A. , 2018. The flexing room architectural robot: an actuated active-bending robotic structure using human feedback. In: Recalibration: on Imprecision and Infidelity: Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture, pp. 232-241.

[13]

Kronenburg, R. , 2007. Flexible: Architecture that Responds to Change. Laurence King Publishing, London.

[14]

Lienhard, J. , 2014. Bending-active Structures : Form-Finding Strategies Using Elastic Deformation in Static and Kinetic Systems and the Structural Potentials Therein. Institut für Tragkonstruktionenund Konstruktives EntwerfenUniversitat Stuttgart, Stuttgart.

[15]

Li, Q. , Wang, X. , Li, H. , 2020. 3D human pose tracking approach based on double Kinect sensors. J. Syst. Simul. 32 (8), 1446- 1454.

[16]

Li, S. , Cui, L. , Zhu, C. , Li, B. , Zhao, N. , Zhu, T. , 2016. Emotion recognition using Kinect motion capture data of human gaits. PeerJ 4, e2364.

[17]

Maierhofer, M. , Soana, V. , Yablonina, M. , Suzuki, S. , Koerner, A. , Knippers, J. , Menges, A. , 2019. Self-Choreographing Network towards cyber-physical design and operation processes of adaptive and interactive bending-active systems. Ubiquity and Autonomy - Paper Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA 2019, pp. 654-663.

[18]

Mylett, M. , Boucher, T. , Scheerer, N. , Iarocci, G. , 2023. Examining the relations between social competence, autistic traits, anxiety and depression in autistic and non-autistic children. J. Autism Dev. Disord. 2023, 1- 13.

[19]

Nadin, M. , 2010. Anticipation and the artificial: aesthetics, ethics, and synthetic life. AI Soc. 25, 103- 118.

[20]

Naz, A. , 2017. An Interactive Living Space-Anticipation in Architecture. ACADEMIA, pp. 257-270.

[21]

Negroponte, N. , 1975. Soft Architecture Machines. The MIT Press, Cambridge.

[22]

Oosterhuis, K. , 2002. Kas Oosterhuis, Programmable Architecture. l’Arcaedizione, Milano.

[23]

Oosterhuis, K. , 2011. Towards a New Kind of Building : Tag, Make, Move, Evolve. NAi, Rotterdam.

[24]

Price, C. , Littlewood, J. , 1968. The fun palace. TDR-The Drama Review, 12 (3), 127- 134.

[25]

Pati, D. , O’Boyle, M. , Hou, J. , Nanda, U. , Ghamari, H. , 2016. Can hospital form trigger fear response? HERD: Health Environments Research & Design Journal 9 (3), 162-175.

[26]

Razzaq, M.A. , Bang, J. , Kang, S.S. , Lee, S. , 2020. Unskem: unobtrusive skeletal-based emotion recognition for user experience. In: 2020 International Conference on Information Networking (ICOIN), pp. 92-96.

[27]

Rohani, N. , Kavakoglu, A. , 2023. AI-driven spatial adaptations through emotions: the case of emo-land as A human-centric approach. In: 41st Conference on Education and Research in Computer Aided Architectural Design in Europe, eCAADe 2023, pp. 889-898 (Graz, Austria).

[28]

Shemesh, A. , Leisman, G. , Bar, M. , Grobman, Y. , 2022. The emotional influence of different geometries in virtual spaces: a neurocognitive examination. J. Environ. Psychol. 81, 101802.

[29]

Shotton, J. , Girshick, R. , Fitzgibbon, A. , Sharp, T. , Cook, M. , Finocchio, M. , Moore, R. , Kohli, P. , Criminisi, A. , Kipman, A. , Blake, A. , 2013. Efficient human pose estimation from single depth images. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2821- 2840.

[30]

Tuszyńska-Bogucka, W. , Kwiatkowski, B. , Chmielewska, M. , Dzieńkowski, M. , Kocki, W. , Pełka, J. , Przesmycka, N. , Bogucki, J. , Galkowski, D. , 2020. The effects of interior design on wellness-Eye tracking analysis in determining emotional experience of architectural space. A survey on a group of volunteers from the Lublin Region, Eastern Poland. Ann. Agric. Environ. Med. 27 (1), 113- 122.

[31]

Vartanian, O. , Navarrete, G. , Chatterjee, A. , Fich, L.B. , Leder, H. , Modroño, C. , Nadal, M. , Rostrup, N. , Skov, M. , 2013. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. USA 110 (Suppl. ment_2), 10446- 10453.

[32]

Wang, L. , Huynh, D.,Q. , Koniusz, P. , 2019. A comparative review of recent kinect-based action recognition algorithms. IEEE Trans. Image Process. 29, 15- 28.

[33]

Wyller, M. , Yablonina, M. , Alvarez, M. , Menges, A. , 2020. Adaptive kinematic textile architecture. Constr Robot 4, 227- 237.

[34]

Xie, H. , Xie, D. , Miyata, K. , 2020. Body2Particles: designing particle systems using body gestures. In: Entertainment Computing-ICEC 2020. Presented at the International Conference on Entertainment Computing. Springer, pp. 445-458.

[35]

Ye, L. , Xiong, G. , Zeng, C. , Zhang, H. , 2020. Trajectory tracking control of 7-DOF redundant robot based on estimation of intention in physical human-robot interaction. Sci. Prog. 103, 1- 23.

[36]

Yiannoudes, S. , 2016. Architecture and Adaptation: from Cybernetics to Tangible Computing. Routledge.

[37]

Zhang, Y. , Zhang, K. , Chen, K. , Xu, Z. , 2020. Real time scanningmodeling system for architecture design and construction. Advances in Technology Innovation 5 (4), 248.

[38]

Zou, Z. , Ergan, S. , 2023. Towards emotionally intelligent buildings: a Convolutional neural network based approach to classify human emotional experience in virtual built environments. Adv. Eng. Inf. 55, 101868.

RIGHTS & PERMISSIONS

The Author(s). Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

AI Summary AI Mindmap
PDF (4474KB)

264

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/