Multi-scale correlation analysis between geometric parameters and solar radiation in high density urban environment——Case study in Nanjing

Jingjin Li, Xinxin Cui, Jianmin Yang

Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (1) : 248-266.

PDF(5219 KB)
PDF(5219 KB)
Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (1) : 248-266. DOI: 10.1016/j.foar.2024.07.009
RESEARCH ARTICLE

Multi-scale correlation analysis between geometric parameters and solar radiation in high density urban environment——Case study in Nanjing

Author information +
History +

Abstract

This study explores the impact of multi-scale urban morphology on solar radiation in high-density environments, focusing on Nanjing as a case study. Using Grasshopper, the research decomposed urban models into four scales-district, block group, block, and plot-and analyzed eight morphological indicators, including site coverage (SC), floor area ratio (FAR), and block surface ratio (BSR). Solar radiation was simulated for the entire year, the summer solstice, and the winter solstice. Key findings reveal that different scales exhibit varying influences on solar radiation. At the district scale, BSR shows the highest correlation with annual solar radiation (R2 = 0.96), while at the neighborhood cluster scale, the minimum distance between buildings (DBmin) is most correlated (R2 = 0.7). At the block scale, BSR significantly correlates with summer solar radiation (R2=0.55). At the plot scale, no single indicator strongly correlates with solar radiation, but a combination of indicators is more relevant. These findings enable rapid solar performance assessments in urban design, promoting efficient solar energy use.

Keywords

Multi-scale / High density / Urban form / Solar radiation

Cite this article

Download citation ▾
Jingjin Li, Xinxin Cui, Jianmin Yang. Multi-scale correlation analysis between geometric parameters and solar radiation in high density urban environment——Case study in Nanjing. Front. Archit. Res., 2025, 14(1): 248‒266 https://doi.org/10.1016/j.foar.2024.07.009

References

[1]
Aboagye, P.D. , Sharifi, A. , 2024. Urban climate adaptation and mitigation action plans: a critical review. Renew. Sustain. Energy Rev. 189.
CrossRef Google scholar
[2]
Ahmadian, E. , Sodagar, B. , Bingham, C. , Elnokaly, A. , Mills, G. , 2021. Effect of urban built form and density on building energy performance in temperate climates. Energy Build. 236.
CrossRef Google scholar
[3]
Alba-Rodríguez, M.D. , Machete, R. , Glória Gomes, M. , Paula Falcão, A. , Marrero, M. , 2021. Holistic model for the assessment of restoration projects of heritage housing. Case studies in Lisbon. Sustain. Cities Soc. 67.
CrossRef Google scholar
[4]
Aleksandrowicz, O. , Zur, S. , Lebendiger, Y. , Lerman, Y. , 2020. Shade maps for prioritizing municipal microclimatic action in hot climates: learning from Tel Aviv-Yafo. Sustain. Cities Soc. 53.
CrossRef Google scholar
[5]
Amado, M. , Poggi, F. , 2014. Solar urban planning: a parametric approach. In: Energy Procedia. Elsevier Ltd, pp. 1539-1548.
CrossRef Google scholar
[6]
Assouline, D. , Mohajeri, N. , Scartezzini, J.L. , 2018. Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. Appl. Energy 217, 189- 211.
CrossRef Google scholar
[7]
Buffat, R. , Grassi, S. , Raubal, M. , 2018. A scalable method for estimating rooftop solar irradiation potential over large regions. Appl. Energy 216, 389- 401.
CrossRef Google scholar
[8]
Byrne, J. , Taminiau, J. , Kurdgelashvili, L. , Kim, K.N. , 2015. A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew. Sustain. Energy Rev.
CrossRef Google scholar
[9]
Chatzipoulka, C. , Compagnon, R. , Nikolopoulou, M. , 2016. Urban geometry and solar availability on façades and ground of real urban forms: using London as a case study. Sol. Energy 138, 53- 66.
CrossRef Google scholar
[10]
Cheng, L. , Zhang, F. , Li, S. , Mao, J. , Xu, H. , Ju, W. , Liu, X. , Wu, J. , Min, K. , Zhang, X. , Li, M. , 2020. Solar energy potential of urban buildings in 10 cities of China. Energy 196.
CrossRef Google scholar
[11]
Chokhachian, A. , Perini, K. , Giulini, S. , Auer, T. , 2020. Urban performance and density: generative study on interdependencies of urban form and environmental measures. Sustain. Cities Soc. 53.
CrossRef Google scholar
[12]
Compagnon, R. , 2004. Solar and daylight availability in the urban fabric. Energy Build. 321-328.
CrossRef Google scholar
[13]
Design Code for Residential Buildings , 2011 (China).
[14]
Formolli, M. , Kleiven, T. , Lobaccaro, G. , 2022. Solar accessibility at the neighborhood scale: a multi-domain analysis to assess the impact of urban densification in Nordic built environments. Solar Energy Advances 2.
CrossRef Google scholar
[15]
Gassar, A.A.A. , Cha, S.H. , 2021. Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales. Appl. Energy 291.
CrossRef Google scholar
[16]
Jayaweera, N. , Rajapaksha, U. , Manthilake, I. , 2021. A parametric approach to optimize solar access for energy efficiency in high-rise residential buildings in dense urban tropics. Sol. Energy 220, 187- 203.
CrossRef Google scholar
[17]
Knowles, R.L. , 2003. The solar envelope: its meaning for energy and buildings. Energy Build. 35, 15- 25.
CrossRef Google scholar
[18]
Li, D. , Liu, G. , Liao, S. , 2015. Solar potential in urban residential buildings. Sol. Energy 111, 225- 235.
CrossRef Google scholar
[19]
Li, J. , Wang, Y. , Xia, Y. , 2022. A novel geometric parameter to evaluate the effects of block form on solar radiation towards sustainable urban design. Sustain. Cities Soc. 84.
CrossRef Google scholar
[20]
Lobaccaro, G. , Carlucci, S. , Croce, S. , Paparella, R. , Finocchiaro, L. , 2017. Boosting solar accessibility and potential of urban districts in the Nordic climate: a case study in Trondheim. Sol. Energy 149, 347- 369.
CrossRef Google scholar
[21]
Mohajeri, N. , Assouline, D. , Guiboud, B. , Bill, A. , Gudmundsson, A. , Scartezzini, J.L. , 2018. A city-scale roof shape classification using machine learning for solar energy applications. Renew. Energy 121, 81- 93.
CrossRef Google scholar
[22]
Mohajeri, N. , Gudmundsson, A. , Kunckler, T. , Upadhyay, G. , Assouline, D. , Kämpf, J.H. , Scartezzini, J.L. , 2019. A solar-based sustainable urban design: the effects of city-scale street-canyon geometry on solar access in Geneva, Switzerland. Appl. Energy 240, 173- 190.
CrossRef Google scholar
[23]
Mohajeri, N. , Upadhyay, G. , Gudmundsson, A. , Assouline, D. , Kämpf, J. , Scartezzini, J.L. , 2016. Effects of urban compactness on solar energy potential. Renew. Energy 93, 469- 482.
CrossRef Google scholar
[24]
Morello, E. , Ratti, C. , 2009. Sunscapes: “Solar envelopes” and the analysis of urban DEMs. Comput. Environ. Urban Syst. 33, 26- 34.
CrossRef Google scholar
[25]
Natanian, J. , Wortmann, T. , 2021. Simplified evaluation metrics for generative energy-driven urban design: a morphological study of residential blocks in Tel Aviv. Energy Build. 240.
CrossRef Google scholar
[26]
Okeil, A. , 2010. A holistic approach to energy efficient building forms. Energy Build. 42, 1437- 1444.
CrossRef Google scholar
[27]
Peronato, G. , Rastogi, P. , Rey, E. , Andersen, M. , 2018. A toolkit for multi-scale mapping of the solar energy-generation potential of buildings in urban environments under uncertainty. Sol. Energy 173, 861- 874.
CrossRef Google scholar
[28]
Ratti, C. , Baker, N. , Steemers, K. , 2005. Energy consumption and urban texture. Energy Build. 37, 762- 776.
CrossRef Google scholar
[29]
Residential Building Code , 2005 (China).
[30]
Sharifi, A. , 2019. Resilient urban forms: a macro-scale analysis. Cities 85, 1- 14.
CrossRef Google scholar
[31]
Shi, Z. , Fonseca, J.A. , Schlueter, A. , 2021. A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design. Renew. Energy 165, 823- 841.
CrossRef Google scholar
[32]
Taminiau, J. , Byrne, J. , 2020. City-scale urban sustainability: spatiotemporal mapping of distributed solar power for New York City. Wiley Interdiscip Rev Energy Environ.
CrossRef Google scholar
[33]
Vartholomaios, A. , 2015. The residential solar block envelope: a method for enabling the development of compact urban blocks with high passive solar potential. Energy Build. 99, 303- 312.
CrossRef Google scholar
[34]
Veisi, O. , Shakibamanesh, A. , 2022. Analysis of solar radiation towards optimization and location of the urban blocks in the neighborhood units. International Journal of Environmental Science & Sustainable Development 7, 66- 90.
CrossRef Google scholar
[35]
Veisi, O. , Shakibamanesh, A. , Rahbar, M. , 2022. Using intelligent multi-objective optimization and artificial neural networking to achieve maximum solar radiation with minimum volume in the archetype urban block. Sustain. Cities Soc. 86.
CrossRef Google scholar
[36]
Wang, J. , Liu, W. , Du, X. , Zhang, W. , 2024. Low-carbon-oriented commercial district urban form optimization and impact assessment analysis. Build. Environ. 254.
CrossRef Google scholar
[37]
Wong, N.H. , He, Y. , Nguyen, N.S. , Raghavan, S.V. , Martin, M. , Hii, D.J.C. , Yu, Z. , Deng, J. , 2021. An integrated multiscale urban microclimate model for the urban thermal environment. Urban Clim. 35.
CrossRef Google scholar
[38]
Xu, S. , Li, Z. , Zhang, C. , Huang, Z. , Tian, J. , Luo, Y. , Du, H. , 2021. A method of calculating urban-scale solar potential by evaluating and quantifying the relationship between urban block typology and occlusion coefficient: a case study of Wuhan in Central China. Sustain. Cities Soc. 64.
CrossRef Google scholar
[39]
Zhang, J. , Xu, L. , Shabunko, V. , Tay, S.E.R. , Sun, H. , Lau, S.S.Y. , Reindl, T. , 2019. Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city. Appl. Energy 240, 513- 533.
CrossRef Google scholar
[40]
Zhu, R. , You, L. , Santi, P. , Wong, M.S. , Ratti, C. , 2019. Solar accessibility in developing cities: a case study in Kowloon East, Hong Kong. Sustain. Cities Soc. 51.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2025 The Author(s). Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi.
审图号:GS京(2025)0055号
AI Summary AI Mindmap
PDF(5219 KB)

Accesses

Citations

Detail

Sections
Recommended

/