A hypothetical comparative evaluation system for arctic indoors

Seyed-Amin Tabatabaeifard, Jean-François Lalonde, Marc Hébert, André Potvin, Claude MH. Demers

Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (1) : 210-223.

PDF(2209 KB)
PDF(2209 KB)
Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (1) : 210-223. DOI: 10.1016/j.foar.2024.07.003
RESEARCH ARTICLE

A hypothetical comparative evaluation system for arctic indoors

Author information +
History +

Abstract

This research presents an innovative approach to evaluating indoor spaces, combining qualitative attributes with numerical architectural metrics. A hypothetical comparative visualization system is introduced, utilizing HDR visual imaging and thermal imaging in 360° field of view across multiple indoor environments. The study aims to provide architects and occupants with a user-friendly tool informing them about the primary considerations of their built spaces, with a specific focus on indoor environmental qualities in remote Arctic regions. Key inquiries delve into the efficacy of the spherical approach and the capacity of comparative visualization to offer insights into space quality. Preliminary experiments contrast indoor environments in terms of circadian lighting, thermal uniformity, and view access to outside in the 360° field of view (VAR360). The resulting visualizations hold significance in introducing an immersive approach for depicting specific non-visible environmental qualities, particularly in relation to the window characteristics of spaces. It demonstrates the integration of multiple environmental variables, both steady-state and temporal, from central points within spaces, providing a comprehensive view over their non-visible qualities. These results should be useful for researchers and practitioners within building sciences, computer vision, and photobiology, showcasing an out-of-the-box approach for categorizing indoor spaces based on standards and human-environmental qualifications.

Keywords

Environmental assessment / 360° imaging / Comparative systems / Low-cost tools / Built environments

Cite this article

Download citation ▾
Seyed-Amin Tabatabaeifard, Jean-François Lalonde, Marc Hébert, André Potvin, Claude MH. Demers. A hypothetical comparative evaluation system for arctic indoors. Front. Archit. Res., 2025, 14(1): 210‒223 https://doi.org/10.1016/j.foar.2024.07.003

References

[1]
Alamirah, H. , Schweiker, M. , Azar, E. , 2022. Immersive virtual environments for occupant comfort and adaptive behavior research - a comprehensive review of tools and applications. Build. Environ. 207 (PA) , 108396.
CrossRef Google scholar
[2]
ALFA , 2018. Adaptive Lighting for Alertness.
[3]
Altomonte, S. , Saadouni, S. , Kent, M.G. , Schiavon, S. , 2017. Satisfaction with indoor environmental quality in BREEAM and non-BREEAM certified office buildings. Architect. Sci. Rev. 60 (4), 343- 355.
CrossRef Google scholar
[4]
ANSI/ASHRAE-55 , 2017. Thermal Environmental Conditions for Human Occupancy. Atlanta, GA, USA , 2017.
[5]
Aries, M.B.C. , Veitch, J.A. , Newsham, G.R. , 2010. Windows, view, and office characteristics predict physical and psychological discomfort. J. Environ. Psychol. 30 (4), 533- 541.
CrossRef Google scholar
[6]
Bolduc, C. , Giroux, J. , Hébert, M. , Demers, C. , Lalonde, J.-F. , 2023. Beyond the pixel: a photometrically calibrated HDR dataset for luminance and color temperature prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8071-8081.
CrossRef Google scholar
[7]
Carrier, A. , 2022. Vues sur l ’ extérieur et éclairage centré sur l ’ humain : représentations spatiales pour guider la requalification des écoles primaires québécoises.
[8]
Cavalerie, A. , Dumas, D. , Gosselin, L. , 2024. Indoor comfort management and energy consumption in Arctic buildings: occupant perceptions in an indigenous community of Canada. Build. Environ.
CrossRef Google scholar
[9]
Chang, C.Y. , Chen, P.K. , 2005. Human response to window views and indoor plants in the workplace. Hortscience 40 (5), 1354- 1359.
CrossRef Google scholar
[10]
Fanger, P.O. , Ipsen, B.M. , Langkilde, G. , Olessen, B.W. , Christensen, N.K. , Tanabe, S. , 1985. Comfort limits for asymmetric thermal radiation. Energy Build. 8 (3), 225- 236.
CrossRef Google scholar
[11]
Figueiro, M.G. , Rea, M.S. , 2016. Office lighting and personal light exposures in two seasons: impact on sleep and mood. Light. Res. Technol. 48 (3), 352- 364.
CrossRef Google scholar
[12]
Franco, L.S. , Shanahan, D.F. , Fuller, R.A. , 2017. A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Publ. Health 14 (8).
CrossRef Google scholar
[13]
Gutin, M. , Tsui, E.K. , Gutin, O. , Wang, X.-M. , Gutin, A. , 2006. Thermal infrared panoramic imaging sensor. Infrared Technology and Applications XXXII 6206 (May 2006), 62062E.
CrossRef Google scholar
[14]
Hatefnia, N. , Ghobad, M. , Town, C. , Africa, S. , Town, C. , Africa, S. , 2018. Radiant Image-Based Data Post-processing and Simulation.
[15]
Heschong, L. , 2021. Visual delight in architecture. In: Visual Delight in Architecture. Routledge.
CrossRef Google scholar
[16]
Hobday, R. , 2006. The Light Revolution: Health, Architecture and the Sun. Findhorn Press.
[17]
Jung, B.Y. , 2017. Measuring Circadian Light through High Dynamic Range (HDR) Photography. Washington.
[18]
Kaasalainen, T. , Mäkinen, A. , Lehtinen, T. , Moisio, M. , Vinha, J. , 2020. Architectural window design and energy efficiency: impacts on heating, cooling and lighting needs in Finnish climates. J. Build. Eng. 27, 100996.
CrossRef Google scholar
[19]
Kellert, S. , 2016. Biophilia and biomimicry: evolutionary adaptation of human versus nonhuman nature. Intell. Build. Int. 8 (2), 51- 56.
CrossRef Google scholar
[20]
Ko, W.H. , Kent, M.G. , Schiavon, S. , Levitt, B. , Betti, G. , 2021. A Window View Quality Assessment Framework. LEUKOS - Journal of Illuminating Engineering Society of North America, pp. 1-40. August.
CrossRef Google scholar
[21]
Ko, W.H. , Schiavon, S. , Altomonte, S. , Andersen, M. , Batool, A. , Browning, W. , Burrell, G. , Chamilothori, K. , Chan, Y. , Chinazzo, G. , Christoffersen, J. , Clanton, N. , Connock, C. , Dogan, T. , Faircloth, B. , Fernandes, L. , Houser, K.W. , Inanici, M. , Jakubiec, A. , et al., 2022. Window view quality : why it matters and what we should do. LEUKOS, The Journal of the Illuminating Engineering Society 18 (3), 259- 267.
CrossRef Google scholar
[22]
Ko, W.H. , Schiavon, S. , Santos, L. , Kent, M.G. , Kim, H. , Keshavarzi, M. , 2023. View access index: the effects of geometric variables of window views on occupants’ satisfaction. Build. Environ. 234 (February) , 110132.
CrossRef Google scholar
[23]
Lalande, P. , Demers, C.M.H. , Lalonde, J. , Hébert, M. , Lalande, P. , Demers, C.M.H. , Lalonde, J. , Demers, C.M.H. , 2020. Spatial representations of melanopic light in architecture. Architect. Sci. Rev. 64 (6), 522- 533.
CrossRef Google scholar
[24]
Lawton, E. , Brymer, E. , Clough, P. , Denovan, A. , 2017. The relationship between the physical activity environment, nature relatedness, anxiety, and the psychological well-being benefits of regular exercisers. Front. Psychol. 8, 1058.
CrossRef Google scholar
[25]
Lee, E.S. , Szybinska Matusiak, B. , Geisler-Moroder, D. , Selkowitz, S.E. , Heschong, L. , 2022. Advocating for view and daylight in buildings: next steps. Energy Build. 265, 112079.
CrossRef Google scholar
[26]
Leung, C. , Ge, H. , 2013. An infrared sphere method to measure mean radiant temperature. Build. Eng. 119 (PART 1) , 75- 86.
[27]
Liu, H. , Liao, J. , Yang, D. , Du, X. , Hu, P. , Yang, Y. , Li, B. , 2014. The response of human thermal perception and skin temperature to step-change transient thermal environments. Build. Environ. 73, 232- 238.
CrossRef Google scholar
[28]
Malczewski, K. , Buczkowski, M. , 2014. Compresively sensed thermal image panorama with enhanced resolution. IEEE Xplore 5-8.
CrossRef Google scholar
[29]
Marino, C. , Nucara, A. , Pietrafesa, M. , 2017. Thermal comfort in indoor environment: effect of the solar radiation on the radiant temperature asymmetry. Sol. Energy 144, 295- 309.
CrossRef Google scholar
[30]
Masayuki, O. , Arens, E. , Zhang, H. , Tsuzuki, K. , Katayama, T. , 2001. Measurement of projected area factors for thermal radiation analysis on each part of the human body. Journal of Architecture and Planning (Transactions of AIJ) 66 (547), 17- 25.
CrossRef Google scholar
[31]
Mitsunaga, T. , Nayar, S.K. , 1999. Radiometric self calibration. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 1, 374- 380.
CrossRef Google scholar
[32]
Morin, A. , Edouard, R. , Duhaime, G. , 2010. Beyond the harsh. Objective and subjective living conditions in Nunavut. Polar Rec. 46 (2), 97- 112.
CrossRef Google scholar
[33]
Moscoso, C. , Chamilothori, K. , Wienold, J. , Andersen, M. , Matusiak, B. , 2021. Window size effects on subjective impressions of daylit spaces: indoor studies at high latitudes using virtual reality. LEUKOS - Journal of Illuminating Engineering Society of North America 17 (3), 242- 264.
CrossRef Google scholar
[34]
National Research Council Canada , 2017. National Energy Code of Canada for Buildings.
[35]
Olesen, B.W. , 1982. Thermal comfort. Tech. Rev. 2, 3- 43.
[36]
Pierson, C. , Cauwerts, C. , Bodart, M. , Wienold, J. , 2019. Tutorial: luminance maps for daylighting studies from high dynamic range photography. LEUKOS - Journal of Illuminating Engineering Society of North America 00 (00), 1- 30.
[37]
Potočnik, J. , Košir, M. , 2021. Influence of geometrical and optical building parameters on the circadian daylighting of an office. J. Build. Eng. 42, 102402.
CrossRef Google scholar
[38]
Pretty, J. , 2004. How nature contributes to mental and physical health. Spiritual. Health Int. 5 (2), 68- 78.
CrossRef Google scholar
[39]
Rizzo, G. , Franzitta, G. , Cannistraro, G. , 1991. Algorithms for the calculation of the mean projected area factors of seated and standing persons. Energy Build. 17 (3), 221- 230.
CrossRef Google scholar
[40]
Rossi, M. , 2019. Circadian Lighting Design in the LED Era. Springer.
CrossRef Google scholar
[41]
Rupp, R.F. , Vásquez, N.G. , Lamberts, R. , 2015. A review of human thermal comfort in the built environment. Energy Build. 105, 178- 205.
CrossRef Google scholar
[42]
Shishegar, N. , Boubekri, M. , 2016. Natural light and productivity: analyzing the impacts of daylighting on students’ and workers’ health and alertness. International Journal of Advances in Chemical Engineering and Biological Sciences 3 (1), 1- 6.
CrossRef Google scholar
[43]
Tabatabaeifard, S.A. , Lalonde, J.F. , Hébert, M. , Potvin, A. , Demers, C.M. , 2023a. Exploring view access for biophilic arctic architecture through immersive visualization of integrative lighting. J. Build. Eng. 69, 106249.
CrossRef Google scholar
[44]
Tabatabaeifard, S.A. , Lalonde, J.F. , Hébert, M. , Potvin, A. , Demers, C.M. , 2024. Immersive Representation for Visualizing Surface Temperature and Integrative Lighting in Architecture. Building and Environment 262, 111852.
CrossRef Google scholar
[45]
Tabatabaeifard, S.A. , Ouellet, D. , Lalonde, J. , Hebert, M. , Potvin, A. , Demers, C.M. , 2023b. Advancing Architectural Decision-Making in Arctic Remote Regions: A Novel 360° Thermal-Visual Imaging System for Daylighting. Preprint.
CrossRef Google scholar
[46]
Tag, B. , Dingler, T. , Vargo, A.W. , Kostakos, V. , 2020. Inferring circadian rhythms of cognitive performance in everyday life. IEEE Pervasive Computing 19 (3), 14- 23.
CrossRef Google scholar
[47]
Tanabe, S.I. , Narita, C. , Ozeki, Y. , Konishi, M. , 2000. Effective radiation area of human body calculated by a numerical simulation. Energy Build. 32 (2), 205- 215.
CrossRef Google scholar
[48]
Well Building Standard , 2015. Circadian Lighting Design.
[49]
Well Building Standard , 2024. Circadian Lighting Design-v2. Q1-Q2 2024.
[50]
WELL Building Standard (WELL) , 2022. Standard WELL-v2. Q1 2022.
[51]
Yoon, S. , 2022. Virtual sensing in intelligent buildings and digitalization. Autom. ConStruct. 143 (March) , 104578.
CrossRef Google scholar
[52]
Zhang, H. , 2003. Indoor Environmental Quality (IEQ) Title Human Thermal Sensation and Comfort in Transient and Nonuniform Thermal Environments. University of California, Berkeley.

RIGHTS & PERMISSIONS

2025 The Author(s). Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi.
AI Summary AI Mindmap
PDF(2209 KB)

Accesses

Citations

Detail

Sections
Recommended

/