Assessment of the street space quality in the metro station areas at different spatial scales and its impact on the urban vitality

Zhongwei Guo, Keqian Luo, Zhixiang Yan, Ang Hu, Chaoshen Wang, Ying Mao, Shaofei Niu

PDF(5510 KB)
PDF(5510 KB)
Front. Archit. Res. ›› 2024, Vol. 13 ›› Issue (6) : 1270-1287. DOI: 10.1016/j.foar.2024.06.006
RESEARCH ARTICLE

Assessment of the street space quality in the metro station areas at different spatial scales and its impact on the urban vitality

Author information +
History +

Abstract

Streets play a crucial role in the pedestrian catchment area (PCA) of metro stations. However, the large-scale quality measurement of street space and its influence on the vitality of station area have not been well revealed. With multisource big data such as points of interest (POI), and street view images, a three-dimensional evaluation system based on the pyramid scene parsing network (PSPNet) and spatial design network analysis (sDNA) is constructed. 73 metro stations in the Third Ring Road of Chengdu are chosen as research samples to carry out large-scale quantitative evaluation of street space in PCAs to reveal the quality characteristics of street space at the overall urban, PCA, and circle scales. Furthermore, this study constructs two multiple linear regression models of weekdays and weekends to explore the relationship between urban vitality and street space quality indicators. The results indicate a heterogeneous distribution of street quality on an urban scale. Streets located in the 300-500 m of PCAs rate highest in terms of convenience and the overall street space quality. The functionality dimension of street spaces in the sample PCAs of Chengdu present a gradient effect with the highest score of 0-300 m in the circle, while the comfortability dimension of streets shows an opposite trend. The multiple linear regression analysis show that street quality indicators are more explanatory of the weekday vitality than the weekend vitality. It indicates that well-connected street network, pleasant street scale, and abundant urban facilities have the greatest effect on urban vitality in the PCAs. The findings can provide new ideas for making targeted interventions in the urban design of metro station areas, to improve the quality of streets and foster urban vitality.

Keywords

Street quality / Metro station / Pedestrian catchment area / TOD (Transit-oriented development) / Evaluation / Urban vitality

Cite this article

Download citation ▾
Zhongwei Guo, Keqian Luo, Zhixiang Yan, Ang Hu, Chaoshen Wang, Ying Mao, Shaofei Niu. Assessment of the street space quality in the metro station areas at different spatial scales and its impact on the urban vitality. Front. Archit. Res., 2024, 13(6): 1270‒1287 https://doi.org/10.1016/j.foar.2024.06.006

References

[1]
Adkins, A. , Dill, J. , Luhr, G. , Neal, M. , 2012. Unpacking walkability: testing the influence of urban design features on perceptions of walking environment attractiveness. J. Urban Des. 17 (4), 499- 510.
CrossRef Google scholar
[2]
Alfonzo, M.A. , 2005. To walk or not to walk? The hierarchy of walking needs. Environ. Behav. 37 (6), 808- 836.
CrossRef Google scholar
[3]
Bivina, G.R. , Gupta, A. , Parida, M. , 2019. Influence of microscale environmental factors on perceived walk accessibility to metro stations. Transport. Res. Transport Environ. 67, 142- 155.
CrossRef Google scholar
[4]
Bivina, G.R. , Gupta, A. , Parida, M. , 2020. Walk accessibility to metro stations: an analysis based on meso- or micro-scale built environment factors. Sustain. Cities Soc. 55, 102047.
CrossRef Google scholar
[5]
Boarnet, , Marlon, G. , Randall, Crane , 2001. Travel by Design: the Influence of Urban Form on Travel. Oxford.
CrossRef Google scholar
[6]
Cerro-Herrero, D. , Prieto-Prieto, J. , Vaquero-Solis, M. , Tapia-Serrano, M.Á. , Sánchez-Miguel, P.A. , 2022. Analysis of variables that influence the walkability of school environments based on the Delphi method. Int. J. Environ. Res. Publ. Health 19 (21), 14201.
CrossRef Google scholar
[7]
Cervero, R. , 2002. Built environments and mode choice: toward a normative framework. Transport. Res. Transport Environ. 7 (4), 265- 284.
CrossRef Google scholar
[8]
Cervero, R. , Kockelman, K. , 1997. Travel demand and the 3Ds: density, diversity, and design. Transport. Res. Transport Environ. 2 (3), 199- 219.
CrossRef Google scholar
[9]
Cervero, R. , Sarmiento, O.L. , Jacoby, E. , Gomez, L.F. , Neiman, A. , 2009. Influences of built environments on walking and cycling: lessons from bogotá. International Journal of Sustainable Transportation 3 (4), 203- 226.
CrossRef Google scholar
[10]
Chen, L. , Lu, Y. , Ye, Y. , Xiao, Y. , Yang, L. , 2022. Examining the association between the built environment and pedestrian volume using street view images. Cities 127, 103734.
CrossRef Google scholar
[11]
Chen, Y. , Yu, B. , Shu, B. , Yang, L. , Wang, R. , 2023. Exploring the spatiotemporal patterns and correlates of urban vitality: temporal and spatial heterogeneity. Sustain. Cities Soc. 91, 104440.
CrossRef Google scholar
[12]
Chiaradia, A. , Cooper, C. , Webster, C. , 2013. sDNA: a Software for Spatial Design Network Analysis.
[13]
Crane, R. , Crepeau, R. , 1998. Does Neighborhood Design Influence Travel?: Behavioral Analysis of Travel Diary and GIS Data.
CrossRef Google scholar
[14]
D’Orso, G. , Migliore, M. , 2020. A GIS-based method for evaluating the walkability of a pedestrian environment and prioritised investments. J. Transport Geogr. 82, 102555.
CrossRef Google scholar
[15]
Deng, H. , Li, Y. , 2016. How actual impedance and overall experience shape the walking catchment area of rail transit station: a general walking efforts framework. At the meeting of the Transportation Research Board 95th Annual Meeting 16-6436.
[16]
Ewing, R. , Cervero, R. , 2010. Travel and the built environment: a meta-analysis. J. Am. Plann. Assoc. 76 (3), 265- 294.
CrossRef Google scholar
[17]
Filyushkina, A. , Strange, N. , Löf, M. , Ezebilo, E.E. , Boman, M. , 2018. Applying the Delphi method to assess impacts of forest management on biodiversity and habitat preservation. For. Ecol. Manag. 409, 179- 189.
CrossRef Google scholar
[18]
Guerra, E. , Cervero, R. , Tischler, D. , 2012. Half-mile circle: does it best represent transit station catchments? Transport. Res. Rec. 2276 (1), 101- 109.
CrossRef Google scholar
[19]
Hajrasouliha, A. , Yin, L. , 2015. The impact of street network connectivity on pedestrian volume. Urban Stud. 52 (13), 2483- 2497.
CrossRef Google scholar
[20]
Handy, S.L. , Boarnet, M.G. , Ewing, R. , Killingsworth, R.E. , 2002. How the built environment affects physical activity. Am. J. Prev. Med. 23 (2), 64- 73.
CrossRef Google scholar
[21]
Harvey, C. , Aultman-Hall, L. , 2016. Measuring urban streetscapes for livability: a review of approaches. Prof. Geogr. 68 (1), 149- 158.
CrossRef Google scholar
[22]
Hochmair, H.H. , 2015. Assessment of bicycle service areas around transit stations. International Journal of Sustainable Transportation 9 (1), 15- 29.
CrossRef Google scholar
[23]
Hong, L. , Pang, S. , Geng, M. , Wang, S. , 2021. The GIS study on the spatial structure and visual perception of historical districts in winter cities. Arabian J. Geosci. 14 (12), 1142.
CrossRef Google scholar
[24]
Jacobs , 1961. The Death and Life of Great American. Vintage Books, New York.
[25]
Jiang, Y. , Han, Y. , Liu, M. , Ye, Y. , 2022. Street vitality and built environment features: a data-informed approach from fourteen Chinese cities. Sustain. Cities Soc. 79, 103724.
CrossRef Google scholar
[26]
Jiang, Y. , Huang, Z. , Zhou, X. , Chen, X. , 2024. Evaluating the impact of urban morphology on urban vitality: an exploratory st-udy using big geo-data. International Journal of Digital Earth 17 (1), 2327571.
CrossRef Google scholar
[27]
Jun, M.-J. , Choi, K. , Jeong, J.-E. , Kwon, K.-H. , Kim, H.-J. , 2015. Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul. J. Transport Geogr. 48, 30- 40.
CrossRef Google scholar
[28]
Jung, H. , Lee, S.Y. , Kim, H.S. , Lee, J.S. , 2017. Does improving the physical street environment create satisfactory and active streets? Evidence from Seoul’s Design Street Project. Transport. Res. Transport Environ. 50, 269- 279.
CrossRef Google scholar
[29]
Kelly, C.E. , Tight, M.R. , Hodgson, F.C. , Page, M.W. , 2011. A comparison of three methods for assessing the walkability of the pedestrian environment. J. Transport Geogr. 19 (6), 1500- 1508.
CrossRef Google scholar
[30]
Kim, S. , Park, S. , Lee, J.S. , 2014. Meso-or micro-scale? Environmental factors influencing pedestrian satisfaction. Transport. Res. Part D. Transport Environ. 30, 10- 20.
CrossRef Google scholar
[31]
Kim, T. , Sohn, D.-W. , Choo, S. , 2017. An analysis of the relationship between pedestrian traffic volumes and built environment around metro stations in Seoul. KSCE J. Civ. Eng. 21 (4), 1443- 1452.
CrossRef Google scholar
[32]
Koo, B.W. , Guhathakurta, S. , Botchwey, N. , 2022. How are neighborhood and street-level walkability factors associated with walking behaviors? A big data approach using street view images. Environ. Behav. 54 (1), 211- 241.
CrossRef Google scholar
[33]
Kuby, M. , Barranda, A. , Upchurch, C. , 2004. Factors influencing light-rail station boardings in the United States. Transport. Res. Pol. Pract. 38 (3), 223- 247.
CrossRef Google scholar
[34]
Kutner, M.H. , Nachtsheim, C.J. , Neter, J. , 2004. Applied Linear Regression Models. McGraw-Hill/Irwin, New York.
[35]
Lee, C. , Moudon, A.V. , Courbois, J.Y.P. , 2006. Built environment and behavior: spatial sampling using parcel data. Ann. Epidemiol. 16 (5), 387- 394.
CrossRef Google scholar
[36]
Li, S. , Lyu, D. , Huang, G. , Zhang, X. , Gao, F. , Chen, Y. , Liu, X. , 2020. Spatially varying impacts of built environment factors on rail transit ridership at station level: a case study in Guangzhou, China. J. Transport Geogr. 82, 102631.
CrossRef Google scholar
[37]
Li, X. , Zhang, C. , Li, W. , Ricard, R. , Meng, Q. , Zhang, W. , 2015. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 14 (3), 675- 685.
CrossRef Google scholar
[38]
Li, Y. , Yabuki, N. , Fukuda, T. , 2022. Exploring the association between street built environment and street vitality using deep learning methods. Sustain. Cities Soc. 79, 103656.
CrossRef Google scholar
[39]
Liu, J. , Tang, H. , Zheng, B. , 2023. Simulation study of summer microclimate in street space of historic conservation areas in China: a case study in Changsha. Front. Environ. Sci. 11, 1146801.
CrossRef Google scholar
[40]
Loo, B.P.Y. , 2021. Walking towards a happy city. J. Transport Geogr. 93, 103078.
CrossRef Google scholar
[41]
Loo, B.P. , Cheng, A.H. , Nichols, S.L. , 2017. Transit-oriented development on greenfield versus infill sites: some lessons from Hong Kong. Landsc. Urban Plann. 167, 37- 48.
CrossRef Google scholar
[42]
Loutzenheiser, D. , 1997. Pedestrian access to transit: model of walk trips and their de-sign and urban form determinants around Bay area rapid transit stations. Transport. Res. Rec.: J. Transport. Res. Board 1604, 40- 49.
CrossRef Google scholar
[43]
Louw, E. , Bruinsma, F. , 2006. From mixed to multiple land use. J. Hous. Built Environ. 21 (1), 1- 13.
CrossRef Google scholar
[44]
Lu, Y. , Sarkar, C. , Xiao, Y. , 2018. The effect of street-level greenery on walking behavior: evidence from Hong Kong. Soc. Sci. Med. 208, 41- 49.
CrossRef Google scholar
[45]
Lynch, K. , 1984. Good City Form. The MIT Press, Cambridge, MA.
[46]
Martí, P. , Serrano-Estrada, L. , Nolasco-Cirugeda, A. , 2019. Social Media data: challenges, opportunities and limitations in urban studies. Comput. Environ. Urban Syst. 74, 161- 174.
CrossRef Google scholar
[47]
Meng, Y. , Xing, H. , 2019. Exploring the relationship between landscape characteristics and urban vibrancy: a case study using morphology and review data. Cities 95, 102389.
CrossRef Google scholar
[48]
Middel, A. , Lukasczyk, J. , Zakrzewski, S. , Arnold, M. , Maciejewski, R. , 2019. Urban form and composition of street canyons: a human-centric big data and deep learning approach. Landsc. Urban Plann. 183, 122- 132.
CrossRef Google scholar
[49]
Monajem, S. , Nosratian, F.E. , 2015. The evaluation of the spatial integration of station areas via the node place model; an application to subway station areas in Tehran. Transport. Res. Transport Environ. 40, 14- 27.
CrossRef Google scholar
[50]
Montgomery, J. , 1998. Making a city: urban vitality, vitality and urban design. J. Urban Des. 3, 93- 116.
CrossRef Google scholar
[51]
O’brien, R.M. , 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quantity 41 (5), 673- 690.
CrossRef Google scholar
[52]
Park, K. , Ewing, R. , Scheer, B.C. , Tian, G. , 2018. The impacts of built environment characteristics of rail station areas on household travel behavior. Cities 74, 277- 283.
CrossRef Google scholar
[53]
Penn, A. , Hillier, B. , Banister, D. , Xu, J. , 1998. Configurational modelling of urban movement network. Environ. Plann. Plann. Des. 25 (1).
CrossRef Google scholar
[54]
Peponis, J. , Wineman, J. , 2002. Spatial structure of environment and behavior. Handbook of Environmental Psychology 271-291.
[55]
Ratner, K.A. , Goetz, A.R. , 2013. The reshaping of land use and urban form in Denver through transit-oriented development. Cities 30, 31- 46.
CrossRef Google scholar
[56]
Rodríguez, D.A. , Aytur, S. , Forsyth, A. , Oakes, J.M. , Clifton, K.J. , 2008. Relation of modifiable neighborhood attributes to walking. Prev. Med. 47 (3), 260- 264.
CrossRef Google scholar
[57]
Schlossberg, M. , Brown, N. , 2004. Comparing transit-oriented development sites by walkability indicators. Transport. Res. Rec.: J. Transport. Res. Board 1887 (1), 34- 42.
CrossRef Google scholar
[58]
Sohn, K. , Shim, H. , 2010. Factors generating boardings at metro stations in the Seoul metropolitan area. Cities 27 (5), 358- 368.
CrossRef Google scholar
[59]
Song, Y. , Knaap, G.J. , 2004. Measuring urban form: is Portland winning the war on sprawl? J. Am. Plann. Assoc. 70, 210- 225.
CrossRef Google scholar
[60]
Southworth, M. Ben-Joseph, E. Biddulph, M. , 2003. In: Streets and the Shaping of Towns and Cities, second ed. Island Press, DC, Washington.
[61]
Strand, J. , Carson, R.T. , Navrud, S. , Ortiz-Bobea, A. , Vincent, J.R. , 2017. Using the Delphi method to value protection of the Amazon rainforest. Ecol. Econ. 131, 475- 484.
CrossRef Google scholar
[62]
Sun, G. , Webster, C. , Ni, M.Y. , Zhang, X. , 2018. Measuring highdensity built environment for public health research: uncertainty with respect to data, indicator design and spatial scale. Geospatial Health 13 (1).
CrossRef Google scholar
[63]
Tang, J. , Long, Y. , 2019. Measuring visual quality of street space and its temporal variation: methodology and its application in the Hutong area in Beijing. Landsc. Urban Plann. 191, 103436.
CrossRef Google scholar
[64]
Vale, D.S. , 2015. Transit-oriented development, integration of land use and transport, and pedestrian accessibility: combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbon. J. Transport Geogr. 45, 70- 80.
CrossRef Google scholar
[65]
Walters, D. , Kotze, D.C. , Rebelo, A. , Pretorius, L. , Job, N. , Lagesse, J.V. , Riddell, E. , Cowden, C. , 2021. Validation of a rapid wetland ecosystem services assessment technique using the Delphi method. Ecol. Indicat. 125, 107511.
CrossRef Google scholar
[66]
Wang, M. , He, Y. , Meng, H. , Zhang, Y. , Zhu, B. , Mango, J. , Li, X. , 2022. Assessing street space quality using street view imagery and function-driven method: the case of Xiamen, China. ISPRS Int. J. Geo-Inf. 11 (5), 282.
CrossRef Google scholar
[67]
Wey, W.M. , Chiu, Y.H. , 2013. Assessing the walkability of pedestrian environment under the transit-oriented development. Habitat Int. 38, 106- 118.
CrossRef Google scholar
[68]
Wey, W.M. , Zhang, H. , Chang, Y.-J. , 2016. Alternative transitoriented development evaluation in sustainable built environment planning. Habitat Int. 55, 109- 123.
CrossRef Google scholar
[69]
Wu, C. , Ye, Y. , Gao, F. , Ye, X. , 2023. Using street view images to examine the association between human perceptions of locale and urban vitality in Shenzhen, China. Sustain. Cities Soc. 88, 104291.
CrossRef Google scholar
[70]
Xia, Y. , Yabuki, N. , Fukuda, T. , 2021. Development of a system for assessing the quality of urban street-level greenery using street view images and deep learning. Urban For. Urban Green. 59, 126995.
CrossRef Google scholar
[71]
Xiao, L. , Lo, S. , Liu, J. , Zhou, J. , Li, Q. , 2021. Nonlinear and synergistic effects of TOD on urban vibrancy: applying local explanations for gradient boosting decision tree. Sustain. Cities Soc. 72, 103063.
CrossRef Google scholar
[72]
Yang, J. , Cao, J. , Zhou, Y. , 2021. Elaborating non-linear associations and synergies of subway access and land uses with urban vitality in Shenzhen. Transport. Res. Pol. Pract. 144, 74- 88.
CrossRef Google scholar
[73]
Yu, B. , Cui, X. , Li, H. , Luo, P. , Liu, R. , Yang, T. , 2022. TOD and vibrancy: the spatio-temporal impacts of the built environment on vibrancy. Front. Environ. Sci. 10, 1009094.
CrossRef Google scholar
[74]
Zhang, L. , Ye, Y. , Zeng, W. , Chiaradia, A. , 2019. A systematic measurement of street quality through multi-sourced urban data: a human-oriented analysis. Int. J. Environ. Res. Publ. Health 16 (10), 1782.
CrossRef Google scholar
[75]
Zhou, D. , Xu, S. , Sun, C. , Deng, Y. , 2021. Dynamic and drivers of spatial change in rapid urban renewal within Beijing inner city. Habitat Int. 111, 102349.
CrossRef Google scholar
[76]
Zhou, J. , Yang, Y. , 2021. Transit-based accessibility and urban development: an exploratory study of Shenzhen based on big and/or open data. Cities 110, 102990.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s). Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
审图号:GS京(2025)0092号
AI Summary AI Mindmap
PDF(5510 KB)

Accesses

Citations

Detail

Sections
Recommended

/