Assessment of the street space quality in the metro station areas at different spatial scales and its impact on the urban vitality

Zhongwei Guo , Keqian Luo , Zhixiang Yan , Ang Hu , Chaoshen Wang , Ying Mao , Shaofei Niu

Front. Archit. Res. ›› 2024, Vol. 13 ›› Issue (6) : 1270 -1287.

PDF (5510KB)
Front. Archit. Res. ›› 2024, Vol. 13 ›› Issue (6) :1270 -1287. DOI: 10.1016/j.foar.2024.06.006
RESEARCH ARTICLE

Assessment of the street space quality in the metro station areas at different spatial scales and its impact on the urban vitality

Author information +
History +
PDF (5510KB)

Abstract

Streets play a crucial role in the pedestrian catchment area (PCA) of metro stations. However, the large-scale quality measurement of street space and its influence on the vitality of station area have not been well revealed. With multisource big data such as points of interest (POI), and street view images, a three-dimensional evaluation system based on the pyramid scene parsing network (PSPNet) and spatial design network analysis (sDNA) is constructed. 73 metro stations in the Third Ring Road of Chengdu are chosen as research samples to carry out large-scale quantitative evaluation of street space in PCAs to reveal the quality characteristics of street space at the overall urban, PCA, and circle scales. Furthermore, this study constructs two multiple linear regression models of weekdays and weekends to explore the relationship between urban vitality and street space quality indicators. The results indicate a heterogeneous distribution of street quality on an urban scale. Streets located in the 300-500 m of PCAs rate highest in terms of convenience and the overall street space quality. The functionality dimension of street spaces in the sample PCAs of Chengdu present a gradient effect with the highest score of 0-300 m in the circle, while the comfortability dimension of streets shows an opposite trend. The multiple linear regression analysis show that street quality indicators are more explanatory of the weekday vitality than the weekend vitality. It indicates that well-connected street network, pleasant street scale, and abundant urban facilities have the greatest effect on urban vitality in the PCAs. The findings can provide new ideas for making targeted interventions in the urban design of metro station areas, to improve the quality of streets and foster urban vitality.

Keywords

Street quality / Metro station / Pedestrian catchment area / TOD (Transit-oriented development) / Evaluation / Urban vitality

Cite this article

Download citation ▾
Zhongwei Guo, Keqian Luo, Zhixiang Yan, Ang Hu, Chaoshen Wang, Ying Mao, Shaofei Niu. Assessment of the street space quality in the metro station areas at different spatial scales and its impact on the urban vitality. Front. Archit. Res., 2024, 13(6): 1270-1287 DOI:10.1016/j.foar.2024.06.006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adkins, A. , Dill, J. , Luhr, G. , Neal, M. , 2012. Unpacking walkability: testing the influence of urban design features on perceptions of walking environment attractiveness. J. Urban Des. 17 (4), 499- 510.

[2]

Alfonzo, M.A. , 2005. To walk or not to walk? The hierarchy of walking needs. Environ. Behav. 37 (6), 808- 836.

[3]

Bivina, G.R. , Gupta, A. , Parida, M. , 2019. Influence of microscale environmental factors on perceived walk accessibility to metro stations. Transport. Res. Transport Environ. 67, 142- 155.

[4]

Bivina, G.R. , Gupta, A. , Parida, M. , 2020. Walk accessibility to metro stations: an analysis based on meso- or micro-scale built environment factors. Sustain. Cities Soc. 55, 102047.

[5]

Boarnet, , Marlon, G. , Randall, Crane , 2001. Travel by Design: the Influence of Urban Form on Travel. Oxford.

[6]

Cerro-Herrero, D. , Prieto-Prieto, J. , Vaquero-Solis, M. , Tapia-Serrano, M.Á. , Sánchez-Miguel, P.A. , 2022. Analysis of variables that influence the walkability of school environments based on the Delphi method. Int. J. Environ. Res. Publ. Health 19 (21), 14201.

[7]

Cervero, R. , 2002. Built environments and mode choice: toward a normative framework. Transport. Res. Transport Environ. 7 (4), 265- 284.

[8]

Cervero, R. , Kockelman, K. , 1997. Travel demand and the 3Ds: density, diversity, and design. Transport. Res. Transport Environ. 2 (3), 199- 219.

[9]

Cervero, R. , Sarmiento, O.L. , Jacoby, E. , Gomez, L.F. , Neiman, A. , 2009. Influences of built environments on walking and cycling: lessons from bogotá. International Journal of Sustainable Transportation 3 (4), 203- 226.

[10]

Chen, L. , Lu, Y. , Ye, Y. , Xiao, Y. , Yang, L. , 2022. Examining the association between the built environment and pedestrian volume using street view images. Cities 127, 103734.

[11]

Chen, Y. , Yu, B. , Shu, B. , Yang, L. , Wang, R. , 2023. Exploring the spatiotemporal patterns and correlates of urban vitality: temporal and spatial heterogeneity. Sustain. Cities Soc. 91, 104440.

[12]

Chiaradia, A. , Cooper, C. , Webster, C. , 2013. sDNA: a Software for Spatial Design Network Analysis.

[13]

Crane, R. , Crepeau, R. , 1998. Does Neighborhood Design Influence Travel?: Behavioral Analysis of Travel Diary and GIS Data.

[14]

D’Orso, G. , Migliore, M. , 2020. A GIS-based method for evaluating the walkability of a pedestrian environment and prioritised investments. J. Transport Geogr. 82, 102555.

[15]

Deng, H. , Li, Y. , 2016. How actual impedance and overall experience shape the walking catchment area of rail transit station: a general walking efforts framework. At the meeting of the Transportation Research Board 95th Annual Meeting 16-6436.

[16]

Ewing, R. , Cervero, R. , 2010. Travel and the built environment: a meta-analysis. J. Am. Plann. Assoc. 76 (3), 265- 294.

[17]

Filyushkina, A. , Strange, N. , Löf, M. , Ezebilo, E.E. , Boman, M. , 2018. Applying the Delphi method to assess impacts of forest management on biodiversity and habitat preservation. For. Ecol. Manag. 409, 179- 189.

[18]

Guerra, E. , Cervero, R. , Tischler, D. , 2012. Half-mile circle: does it best represent transit station catchments? Transport. Res. Rec. 2276 (1), 101- 109.

[19]

Hajrasouliha, A. , Yin, L. , 2015. The impact of street network connectivity on pedestrian volume. Urban Stud. 52 (13), 2483- 2497.

[20]

Handy, S.L. , Boarnet, M.G. , Ewing, R. , Killingsworth, R.E. , 2002. How the built environment affects physical activity. Am. J. Prev. Med. 23 (2), 64- 73.

[21]

Harvey, C. , Aultman-Hall, L. , 2016. Measuring urban streetscapes for livability: a review of approaches. Prof. Geogr. 68 (1), 149- 158.

[22]

Hochmair, H.H. , 2015. Assessment of bicycle service areas around transit stations. International Journal of Sustainable Transportation 9 (1), 15- 29.

[23]

Hong, L. , Pang, S. , Geng, M. , Wang, S. , 2021. The GIS study on the spatial structure and visual perception of historical districts in winter cities. Arabian J. Geosci. 14 (12), 1142.

[24]

Jacobs , 1961. The Death and Life of Great American. Vintage Books, New York.

[25]

Jiang, Y. , Han, Y. , Liu, M. , Ye, Y. , 2022. Street vitality and built environment features: a data-informed approach from fourteen Chinese cities. Sustain. Cities Soc. 79, 103724.

[26]

Jiang, Y. , Huang, Z. , Zhou, X. , Chen, X. , 2024. Evaluating the impact of urban morphology on urban vitality: an exploratory st-udy using big geo-data. International Journal of Digital Earth 17 (1), 2327571.

[27]

Jun, M.-J. , Choi, K. , Jeong, J.-E. , Kwon, K.-H. , Kim, H.-J. , 2015. Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul. J. Transport Geogr. 48, 30- 40.

[28]

Jung, H. , Lee, S.Y. , Kim, H.S. , Lee, J.S. , 2017. Does improving the physical street environment create satisfactory and active streets? Evidence from Seoul’s Design Street Project. Transport. Res. Transport Environ. 50, 269- 279.

[29]

Kelly, C.E. , Tight, M.R. , Hodgson, F.C. , Page, M.W. , 2011. A comparison of three methods for assessing the walkability of the pedestrian environment. J. Transport Geogr. 19 (6), 1500- 1508.

[30]

Kim, S. , Park, S. , Lee, J.S. , 2014. Meso-or micro-scale? Environmental factors influencing pedestrian satisfaction. Transport. Res. Part D. Transport Environ. 30, 10- 20.

[31]

Kim, T. , Sohn, D.-W. , Choo, S. , 2017. An analysis of the relationship between pedestrian traffic volumes and built environment around metro stations in Seoul. KSCE J. Civ. Eng. 21 (4), 1443- 1452.

[32]

Koo, B.W. , Guhathakurta, S. , Botchwey, N. , 2022. How are neighborhood and street-level walkability factors associated with walking behaviors? A big data approach using street view images. Environ. Behav. 54 (1), 211- 241.

[33]

Kuby, M. , Barranda, A. , Upchurch, C. , 2004. Factors influencing light-rail station boardings in the United States. Transport. Res. Pol. Pract. 38 (3), 223- 247.

[34]

Kutner, M.H. , Nachtsheim, C.J. , Neter, J. , 2004. Applied Linear Regression Models. McGraw-Hill/Irwin, New York.

[35]

Lee, C. , Moudon, A.V. , Courbois, J.Y.P. , 2006. Built environment and behavior: spatial sampling using parcel data. Ann. Epidemiol. 16 (5), 387- 394.

[36]

Li, S. , Lyu, D. , Huang, G. , Zhang, X. , Gao, F. , Chen, Y. , Liu, X. , 2020. Spatially varying impacts of built environment factors on rail transit ridership at station level: a case study in Guangzhou, China. J. Transport Geogr. 82, 102631.

[37]

Li, X. , Zhang, C. , Li, W. , Ricard, R. , Meng, Q. , Zhang, W. , 2015. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 14 (3), 675- 685.

[38]

Li, Y. , Yabuki, N. , Fukuda, T. , 2022. Exploring the association between street built environment and street vitality using deep learning methods. Sustain. Cities Soc. 79, 103656.

[39]

Liu, J. , Tang, H. , Zheng, B. , 2023. Simulation study of summer microclimate in street space of historic conservation areas in China: a case study in Changsha. Front. Environ. Sci. 11, 1146801.

[40]

Loo, B.P.Y. , 2021. Walking towards a happy city. J. Transport Geogr. 93, 103078.

[41]

Loo, B.P. , Cheng, A.H. , Nichols, S.L. , 2017. Transit-oriented development on greenfield versus infill sites: some lessons from Hong Kong. Landsc. Urban Plann. 167, 37- 48.

[42]

Loutzenheiser, D. , 1997. Pedestrian access to transit: model of walk trips and their de-sign and urban form determinants around Bay area rapid transit stations. Transport. Res. Rec.: J. Transport. Res. Board 1604, 40- 49.

[43]

Louw, E. , Bruinsma, F. , 2006. From mixed to multiple land use. J. Hous. Built Environ. 21 (1), 1- 13.

[44]

Lu, Y. , Sarkar, C. , Xiao, Y. , 2018. The effect of street-level greenery on walking behavior: evidence from Hong Kong. Soc. Sci. Med. 208, 41- 49.

[45]

Lynch, K. , 1984. Good City Form. The MIT Press, Cambridge, MA.

[46]

Martí, P. , Serrano-Estrada, L. , Nolasco-Cirugeda, A. , 2019. Social Media data: challenges, opportunities and limitations in urban studies. Comput. Environ. Urban Syst. 74, 161- 174.

[47]

Meng, Y. , Xing, H. , 2019. Exploring the relationship between landscape characteristics and urban vibrancy: a case study using morphology and review data. Cities 95, 102389.

[48]

Middel, A. , Lukasczyk, J. , Zakrzewski, S. , Arnold, M. , Maciejewski, R. , 2019. Urban form and composition of street canyons: a human-centric big data and deep learning approach. Landsc. Urban Plann. 183, 122- 132.

[49]

Monajem, S. , Nosratian, F.E. , 2015. The evaluation of the spatial integration of station areas via the node place model; an application to subway station areas in Tehran. Transport. Res. Transport Environ. 40, 14- 27.

[50]

Montgomery, J. , 1998. Making a city: urban vitality, vitality and urban design. J. Urban Des. 3, 93- 116.

[51]

O’brien, R.M. , 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quantity 41 (5), 673- 690.

[52]

Park, K. , Ewing, R. , Scheer, B.C. , Tian, G. , 2018. The impacts of built environment characteristics of rail station areas on household travel behavior. Cities 74, 277- 283.

[53]

Penn, A. , Hillier, B. , Banister, D. , Xu, J. , 1998. Configurational modelling of urban movement network. Environ. Plann. Plann. Des. 25 (1).

[54]

Peponis, J. , Wineman, J. , 2002. Spatial structure of environment and behavior. Handbook of Environmental Psychology 271-291.

[55]

Ratner, K.A. , Goetz, A.R. , 2013. The reshaping of land use and urban form in Denver through transit-oriented development. Cities 30, 31- 46.

[56]

Rodríguez, D.A. , Aytur, S. , Forsyth, A. , Oakes, J.M. , Clifton, K.J. , 2008. Relation of modifiable neighborhood attributes to walking. Prev. Med. 47 (3), 260- 264.

[57]

Schlossberg, M. , Brown, N. , 2004. Comparing transit-oriented development sites by walkability indicators. Transport. Res. Rec.: J. Transport. Res. Board 1887 (1), 34- 42.

[58]

Sohn, K. , Shim, H. , 2010. Factors generating boardings at metro stations in the Seoul metropolitan area. Cities 27 (5), 358- 368.

[59]

Song, Y. , Knaap, G.J. , 2004. Measuring urban form: is Portland winning the war on sprawl? J. Am. Plann. Assoc. 70, 210- 225.

[60]

Southworth, M. Ben-Joseph, E. Biddulph, M. , 2003. In: Streets and the Shaping of Towns and Cities, second ed. Island Press, DC, Washington.

[61]

Strand, J. , Carson, R.T. , Navrud, S. , Ortiz-Bobea, A. , Vincent, J.R. , 2017. Using the Delphi method to value protection of the Amazon rainforest. Ecol. Econ. 131, 475- 484.

[62]

Sun, G. , Webster, C. , Ni, M.Y. , Zhang, X. , 2018. Measuring highdensity built environment for public health research: uncertainty with respect to data, indicator design and spatial scale. Geospatial Health 13 (1).

[63]

Tang, J. , Long, Y. , 2019. Measuring visual quality of street space and its temporal variation: methodology and its application in the Hutong area in Beijing. Landsc. Urban Plann. 191, 103436.

[64]

Vale, D.S. , 2015. Transit-oriented development, integration of land use and transport, and pedestrian accessibility: combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbon. J. Transport Geogr. 45, 70- 80.

[65]

Walters, D. , Kotze, D.C. , Rebelo, A. , Pretorius, L. , Job, N. , Lagesse, J.V. , Riddell, E. , Cowden, C. , 2021. Validation of a rapid wetland ecosystem services assessment technique using the Delphi method. Ecol. Indicat. 125, 107511.

[66]

Wang, M. , He, Y. , Meng, H. , Zhang, Y. , Zhu, B. , Mango, J. , Li, X. , 2022. Assessing street space quality using street view imagery and function-driven method: the case of Xiamen, China. ISPRS Int. J. Geo-Inf. 11 (5), 282.

[67]

Wey, W.M. , Chiu, Y.H. , 2013. Assessing the walkability of pedestrian environment under the transit-oriented development. Habitat Int. 38, 106- 118.

[68]

Wey, W.M. , Zhang, H. , Chang, Y.-J. , 2016. Alternative transitoriented development evaluation in sustainable built environment planning. Habitat Int. 55, 109- 123.

[69]

Wu, C. , Ye, Y. , Gao, F. , Ye, X. , 2023. Using street view images to examine the association between human perceptions of locale and urban vitality in Shenzhen, China. Sustain. Cities Soc. 88, 104291.

[70]

Xia, Y. , Yabuki, N. , Fukuda, T. , 2021. Development of a system for assessing the quality of urban street-level greenery using street view images and deep learning. Urban For. Urban Green. 59, 126995.

[71]

Xiao, L. , Lo, S. , Liu, J. , Zhou, J. , Li, Q. , 2021. Nonlinear and synergistic effects of TOD on urban vibrancy: applying local explanations for gradient boosting decision tree. Sustain. Cities Soc. 72, 103063.

[72]

Yang, J. , Cao, J. , Zhou, Y. , 2021. Elaborating non-linear associations and synergies of subway access and land uses with urban vitality in Shenzhen. Transport. Res. Pol. Pract. 144, 74- 88.

[73]

Yu, B. , Cui, X. , Li, H. , Luo, P. , Liu, R. , Yang, T. , 2022. TOD and vibrancy: the spatio-temporal impacts of the built environment on vibrancy. Front. Environ. Sci. 10, 1009094.

[74]

Zhang, L. , Ye, Y. , Zeng, W. , Chiaradia, A. , 2019. A systematic measurement of street quality through multi-sourced urban data: a human-oriented analysis. Int. J. Environ. Res. Publ. Health 16 (10), 1782.

[75]

Zhou, D. , Xu, S. , Sun, C. , Deng, Y. , 2021. Dynamic and drivers of spatial change in rapid urban renewal within Beijing inner city. Habitat Int. 111, 102349.

[76]

Zhou, J. , Yang, Y. , 2021. Transit-based accessibility and urban development: an exploratory study of Shenzhen based on big and/or open data. Cities 110, 102990.

RIGHTS & PERMISSIONS

The Author(s). Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

PDF (5510KB)

899

Accesses

0

Citation

Detail

Sections
Recommended

/