Solar Ark 3.0: A lightweight, energy-efficient house based on smooth poly-hypar surface structures

Ting Cao, Junjun Zhang, Hong Zhang, Yusong Zhu, Yanhua Wu

PDF(5353 KB)
PDF(5353 KB)
Front. Archit. Res. ›› 2024, Vol. 13 ›› Issue (5) : 1170-1183. DOI: 10.1016/j.foar.2024.04.004
RESEARCH ARTICLE

Solar Ark 3.0: A lightweight, energy-efficient house based on smooth poly-hypar surface structures

Author information +
History +

Abstract

This research addresses energy consumption challenges in the design and construction of concrete freeform surface architecture. It proposes an integrated design approach centered on smooth poly-hypar surfaces, serving as a mediator to amalgamate architectural smoothness, structural stiffness, construction convenience, and building energy efficiency from the initial design phase. To testify the versatile functionality of smooth poly-hypar surfaces beyond structural loadbearing, they are employed in the design and construction of a Solar house-a prototype aimed at establishing an energy-efficient modular design and construction system for concrete-freeform surface buildings. This approach capitalizes on the unique structural and geometrical properties offered by smooth poly-hypar surfaces. By leveraging this special geometry, the methodology transcends individual stages, encompassing the entire integrated process and overcoming limitations associated with traditional sequential design strategies. It underscores the interconnected nature of design, construction, and sustainability considerations.

Keywords

Freeform shell / Smooth poly-hypar surface / Hyperbolic paraboloid / Energy self-sufficiency / And energy-efficient construction

Cite this article

Download citation ▾
Ting Cao, Junjun Zhang, Hong Zhang, Yusong Zhu, Yanhua Wu. Solar Ark 3.0: A lightweight, energy-efficient house based on smooth poly-hypar surface structures. Front. Archit. Res., 2024, 13(5): 1170‒1183 https://doi.org/10.1016/j.foar.2024.04.004

References

[1]
Adriaenssens, S. , Brown, N. , Lowinger, R. , Hernandez, J. , 2012. Structural analysis of reinforced concrete folded hyperbolic paraboloid: a case study of the modern Miami marine stadium. Int. J. Architect. Herit. 8 (4), 498- 516.
[2]
Allwood, J.M. , Cullen, J. , 2011. Sustainable Materials: with Both Eyes Open, first ed. UIT Cambridge Limited, Cambridge.
[3]
Antonucci, M. , Nannini, S. , 2019. Through history and technique: pier Luigi Nervi on architectural resilience. Archit. Hist. 7 (1), 9.
[4]
Apeland, K. , 1962. On the analysis the bending stress in shallow hyperbolic paraboloidal shells. In: World Conference on Shell Structures, San Francisco.
[5]
Bergdoll, B. , Pourtois, C. , Chiorino, C. , 2010. Pier Luigi Nervi: Architecture as Challenge, first ed. Silvana Editoriale, Milan.
[6]
Billington, D.P. , 1965. Thin Shell Concrete Structures, first ed. McGraw-Hill College, New York.
[7]
Billington, D.P. , 1985. The Tower and the Bridge: the New Art of Structural Engineering, first ed. Princeton University Press, Princeton.
[8]
Bösiger, H. , 2011. The buildings of isler shells. J. Int. Assoc. Shell Spat. Struct. 52 (3), 61- 172.
[9]
Candela, F. , 1955. Structural applications of hyperbolic paraboloidical shells. J. Am. Concr. Inst. 57 (16), 353- 371.
[10]
Candela, F. , 1960. General formulas for membrane stresses in hyperbolic paraboloidical shells. J. Am. Concr. Inst. 51 (20), 353- 362.
[11]
Cao, T. , 2019. Smooth Poly-Hypar Surface Structures. ETH Zurich, Zurich.
[12]
Cao, T. , D’Acunto, P. , Castellon, J.J. , Tellini, A. , Schwartz, J. , Zhang, H. , 2021. Design of prestressed gridshells as smooth poly-hypar surface structures. J. Struct. 30, 973- 984.
[13]
Cao, T. , Kotnik, T. , Schwartz, J. , 2022a. Smooth poly-hypar surface structures: freeform shells based on combinations of hyperbolic paraboloids. Nexus Netw. J. 25, 439- 463.
[14]
Cao, T. , Schwartz, J. , Kotnik, T. , 2017. The global equilibrium of hypar-combined shells based on the method of graphic statics. J.IASS. 1-11.
[15]
Cao, T. , Tellini, A. , Wan, Z.S. , 2022b. Design and fabrication of smooth poly-hypar timber gridshells. Architect. Sci. Rev. 67 (1), 47- 62.
[16]
Chilton, J. , 2000. The Engineer’s Contribution to Contemporary Architecture: Heinz Isler, first ed. Thomas Telford, London.
[17]
China Association of Building Energy Efficiency , 2021. China Building Energy Consumption and Carbon Emission Research Report. Beijing.
[18]
Cole, R.J. , Kernan, P.C. , 1996. Life-cycle energy use in office buildings. Built. Environ. 31 (4), 307- 317.
[19]
Coster, A.D. , Laet, L.D. , Tysmans, T. , 2024. Exploring the three-dimensional space with modular concrete shells: form-finding, design and structural analysis. Thin-Walled Struct. 195.
[20]
Craizer, M. , Anciaux, H. , Thomas, L. , 2009. Discrete affine minimal surfaces with indefinite metric. Differ. Geom. Appl. 28 (2), 158- 169.
[21]
Domingo, A. , Lázaro, C. , Serna, P. , 1999. Design of a thin shell steel fiber reinforced concrete hypar roof. In: IASS Symposium 1999, Madrid.
[22]
Escher, C. , 2016. Model-experiment-enviroment. In: Vrachliotis, G., Feireiss, L. (Eds.), Frei Otto: Thinking by Modelling. Spector Books, Leipzig, p. 54.
[23]
EUROSTAT , 2016. Waste Statistics Online Database [Online].
[24]
Faber, C. , 1963. Candela: The Shell Builder, first ed. Reinhold Publishing Corporation, New York.
[25]
González Moreno-Navarro, J.L. , Casals Balagué, A. , 2003. Gaudi’s approach to building. In: Huerta, A. (Ed.), Madrid: l. Juan de Herrera. proceedings of the First International Congress on Construction History, Madrid, pp. 21-30.
[26]
Huerta, S. , 2006. Structural design in the work of Gaudi. Architect. Sci. Rev. 49 (4), 324- 339.
[27]
Huhnen-Venedey, Emanuel, Rörig, Thilo, 2014. Discretization of asymptotic line parametrizations. Geometriae Dedicata 168 (1), 265- 289.
[28]
Kaethner, S. , Burridge, J. , 2012. Embodied CO2 of structural frames. Struct. Eng. 90 (5), 33- 40.
[29]
Käferböck, F. , Pottmann, H. , 2013. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces. Comput. Aided Geomet. Des. 30 (5), 476- 489.
[30]
Kotnik, T. , Schwartz, J. , 2011. The architecture of Heinz isler. J. Int. Assoc. Shell Spat. Struct. 52 (3), 185- 190.
[31]
Mendoza, M. , 2011. Félix candela’s legacy: an investigation of félix candela’s work and its legacy to the sociocultural heritage and public identity of the contemporary society in Mexico and the UK. In: Nunes, J.-P., Gloster, D. (Eds.), RIBA Education Yearbook 2011. Royal Institute of British Architects., London, pp. 126-131.
[32]
Mortenson, M.E. , 2006. Geometric Modeling, third ed. Industrial Press, New York.
[33]
Mueller, G. , 1977. Nonlinear analysis of reinforced concrete hyperbolic paraboloid shells. Structural Engineering, Mechanics, and Materials, Berkeley, UC Berkeley.
[34]
Pongiglione, M. , Calderini, C. , 2016. Sustainable structural design: comprehensive literature review. J. Struct. Eng. 142 (12).
[35]
Popescu, M. , 2019. KnitCrete: Stay-In-Place Knitted Fabric Formwork for Complex Concrete Structures. ETH Zurich, Zurich.
[36]
Popescu, M. , Reiter, L. , Liew, A. , Van Mele, T. , Flat, R.J. , Block, P. , 2018. Building in concrete with an ultra-lightweight knitted stay-in-place formwork: prototype of a concrete shell bridge. J. Struct. 14, 322- 332.
[37]
Popescu, M. , Rippmann, M. , Liew, A. , Reiter, L. , Flatt, R.J. , Van Mele, T. , Block, P. , 2021. Structural design, digital fabrication and construction of the cable-net and knitted formwork of the KnitCandela concrete shell. J. Struct. 31, 1287- 1299.
[38]
Ramaswamy, G.S. , 1968. Design and Construction of Concrete Shell Roofs, first ed. McGraw-Hill, New York.
[39]
Rozvany, G. , Bendsoe, M. , Kirsch, U. , 1995. Layout optimization of structures. Appl. Mech. Rev. 48 (2), 41- 119.
[40]
Sartori, I. , Hestnes, A.G. , 2007. Energy use in the life cycle of conventional and low-energy buildings: a review article. Energy Build. 39 (3), 249- 257.
[41]
Schnobrich, W. , 1988. Hyperbolic paraboloid shell structures. In: Christiansen, J. (Ed.), Hyperbolic Paraboloid Shells: State of the Art. American Concrete Institute, Detroit, pp. 1-15.
[42]
Sorrell, S. , 2003. Making the link: climate policy and the reform of the UK construction industry. Energy Pol. 31 (9), 865- 878.
[43]
Team Solar Ark 3.0 , 2022. Energy Narrative. Organizing Committee of Solar Decathlon, Zhangjiakou.
[44]
UNEP , 2013. Buildings and Climate Change. UNEP DTIE Sustainable Consumption and Production Branch, Paris.
[45]
Veenendaal, D. , Bakker, J. , Block, P. , 2017. Structural design of the flexibly formed, mesh-reinforced concrete sandwich shell roof of NEST HiLo. J. Int. Assoc. Shell Spat. Struct. 58 (1), 23- 38.
[46]
Veenendaal, D. , Block, P. , 2014. Design process for prototype concrete shells using a hybrid cable-net and fabric formwork. Eng. Struct. 75, 39- 50.
[47]
Vrachliotis, G. , Kleinmanns, J. , Kunz, M. , Kurz, P. , 2016. Frei Otto-Thinking by Modeling, first ed. Spector Books, Leipzig.

RIGHTS & PERMISSIONS

2024 The Author(s). Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
AI Summary AI Mindmap
PDF(5353 KB)

Accesses

Citations

Detail

Sections
Recommended

/