Does architectural design require single-objective or multi-objective optimisation? A critical choice with a comparative study between model-based algorithms and genetic algorithms

Ran Zhang, Xiaodong Xu, Ke Liu, Lingyu Kong, Xi Wang, Linzhi Zhao, Abudureheman Abuduwayiti

PDF(3256 KB)
PDF(3256 KB)
Front. Archit. Res. ›› 2024, Vol. 13 ›› Issue (5) : 1079-1094. DOI: 10.1016/j.foar.2024.03.010
RESEARCH ARTICLE

Does architectural design require single-objective or multi-objective optimisation? A critical choice with a comparative study between model-based algorithms and genetic algorithms

Author information +
History +

Abstract

Efficiency and accuracy have been challenging in the design optimisation process driven by building simulation. The literature review identified the limitations of previous studies, prompting this study to explore the performance of single-objective versus multi-objective efficiency and accuracy on equivalent problems based on control variables and to consider more algorithmic options for a broader range of designs. This study constructed a comparative energy-related experiment whose results are in the same unit, either as a single-objective optimisation or split into two objectives. The project aims to reduce annual energy consumption and increase solar utilisation potential. Our approach focuses on the use of a surrogate modelling algorithm, Radial Basis Function Optimisation Algorithm (RBFOpt), with its multi-objective version RBFMOpt, to optimise the energy performance while quickly identifying new energy requirements for an iterative office building design logic, contrast to traditional genetic-algorithm-driven. In addition, the research also conducted a comparative study between RBFOpt and Covariance Matrix Adaptation Evolutionary Strategies (CMAES) in a single-objective comparison and between RBFMOpt and Nondominated Sorting Genetic Algorithm II (NSGA-II) in a multi-objective optimisation process. The comparison of these sets of Opt algorithms with evolutionary algorithms helps to provide data-driven evidence to support early design decisions.

Keywords

Architectural design optimisation / Single-objective optimisation / Multi-objective optimisation / Energy efficiency / Early design decision

Cite this article

Download citation ▾
Ran Zhang, Xiaodong Xu, Ke Liu, Lingyu Kong, Xi Wang, Linzhi Zhao, Abudureheman Abuduwayiti. Does architectural design require single-objective or multi-objective optimisation? A critical choice with a comparative study between model-based algorithms and genetic algorithms. Front. Archit. Res., 2024, 13(5): 1079‒1094 https://doi.org/10.1016/j.foar.2024.03.010

References

[1]
Alhazmi, M. , Sailor, D.J. , Anand, J. , 2022. A new perspective for understanding actual anthropogenic heat emissions from buildings. Energy Build. 258, 111860.
[2]
Anand, P. , Sekhar, C. , Cheong, D. , Santamouris, M. , Kondepudi, S. , 2019. Occupancy-based zone-level VAV system control implications on thermal comfort, ventilation, indoor air quality and building energy efficiency. Energy Build. 204, 109473.
[3]
Aporterfield , 2020. Crystallon-Simulation with Millipede. Food4Rhino.
[4]
Azar, E. , O’Brien, W. , Carlucci, S. , Hong, T. , Sonta, A. , Kim, J. , Andargie, M.S. , Abuimara, T. , El Asmar, M. , Jain, R.K. , Ouf, M.M. , Tahmasebi, F. , Zhou, J. , 2020. Simulation-aided occupant-centric building design: a critical review of tools, methods, and applications. Energy Build. 224.
[5]
Beyhaghi, Sepehr, 2021. Antoni. Food4Rhino.
[6]
Chen, B. , Liu, Q. , Chen, H. , Wang, L. , Deng, T. , Zhang, L. , Wu, X. , 2021. Multiobjective optimization of building energy consumption based on BIM-DB and LSSVM-NSGA-II. J. Clean. Prod. 294, 126153.
[7]
Chen, Q. , Kuang, Z. , Liu, X. , Zhang, T. , 2023. The tradeoff between electricity cost and CO2 emission in the optimization of photovoltaic-battery systems for buildings. J. Clean. Prod. 386, 135761.
[8]
Chronis, A. , 2020. InFraRed: an Intelligent Framework for Resilient Design 5.
[9]
Cross, N. , 2007. Forty years of design research. Des. Stud. 28, 1- 4.
[10]
D’Agostino, D. , D’Agostino, P. , Minelli, F. , Minichiello, F. , 2021. Proposal of a new automated workflow for the computational performance-driven design optimization of building energy need and construction cost. Energy Build. 239, 110857.
[11]
Dai, M. , Yang, F. , Zhang, Z. , Liu, G. , Feng, X. , 2021. Energetic, economic and environmental (3E) multi-objective optimization of the back-end separation of ethylene plant based on adaptive surrogate model. J. Clean. Prod. 310, 127426.
[12]
Dhariwal, J. , Banerjee, R. , 2017. An approach for building design optimization using design of experiments. Build. Simulat. 10, 323- 336.
[13]
Du, T. , Jansen, S. , Turrin, M. , van den Dobbelsteen, A. , 2021. Effect of space layouts on the energy performance of office buildings in three climates. J. Build. Eng. 39, 102198.
[14]
Fischer, T. , 2008. Designing (Tools (For Designing (Tools (For ...)))). RMIT Universitt.
[15]
Gaillard, L. , Ménézo, C. , Giroux, S. , Pabiou, H. , Le-Berre, R. , 2014. Experimental study of thermal response of PV modules integrated into naturally-ventilated double skin facades. Energy Proc. 48, 1254- 1261.
[16]
Gimenez, J.M. , Bre, F. , Nigro, N.M. , Fachinotti, V. , 2018. Computational modeling of natural ventilation in low-rise non-rectangular floor-plan buildings. Build. Simulat. 11, 1255- 1271.
[17]
Giouri, E.D. , Tenpierik, M. , Turrin, M. , 2020. Zero energy potential of a high-rise office building in a Mediterranean climate: using multi-objective optimization to understand the impact of design decisions towards zero-energy high-rise buildings. Energy Build. 209, 109666.
[18]
He, C. , Zhang, Y. , Gong, D. , Ji, X. , 2023. A review of surrogateassisted evolutionary algorithms for expensive optimization problems. Expert Syst. Appl. 217, 119495.
[19]
Holmström, K., Quttineh, N.-H., Edvall, M. , 2008. An adaptive radial basis algorithm (ARBF) for expensive black-box mixedinteger constrained global optimization. Optim. Eng. 9, 311- 339.
[20]
Hong, T. , Langevin, J. , Sun, K. , 2018. Building simulation: ten challenges. Build. Simulat. 11, 871- 898.
[21]
Ji, Y. , Wang, W. , He, Y. , Li, L. , Zhang, H. , Zhang, T. , 2023. Performance in generation: an automatic generalizable generative-design-based performance optimization framework for sustainable building design. Energy Build. 298, 113512.
[22]
Kabošová, L., Chronis, A. , Galanos, T. , 2021. Leveraging urban configurations for achieving wind comfort in cities. In: SIGraDi 2021, p. 13 online.
[23]
Kim, R. , Hong, S. , Norton, T. , Amon, T. , Youssef, A. , Berckmans, D. , Lee, I. , 2020. Computational fluid dynamics for non-experts: development of a user-friendly CFD simulator (HNVR-SYS) for natural ventilation design applications. Biosyst. Eng. 193, 232- 246.
[24]
Lee, J. , Park, Jeongsu, Jung, H.-J., Park, Jiyoung, 2017. Renewable energy potential by the application of a building integrated photovoltaic and wind turbine system in global urban areas. Energies 10, 2158.
[25]
Li, X. , Peng, J. , Li, N. , Wu, Y. , Fang, Y. , Li, T. , Wang, M. , Wang, C. , 2019. Optimal design of photovoltaic shading systems for multistory buildings. J. Clean. Prod. 220, 1024- 1038.
[26]
Liu, K. , Xu, X. , Zhang, R. , Kong, L. , Wang, W. , Deng, W. , 2023. Impact of urban form on building energy consumption and solar energy potential: a case study of residential blocks in Jianhu, China. Energy Build. 280, 112727.
[27]
Liu, Z. , Liu, X. , Zhang, H. , Yan, D. , 2023. Integrated physical approach to assessing urban-scale building photovoltaic potential at high spatiotemporal resolution. J. Clean. Prod. 388, 135979.
[28]
Luo, X. , Tang, Y.-H., Hong, T. , 2020. Efficient computation of surface sunlit fractions in urban-scale building modeling using ray-tracing techniques. In: Building Performance Analysis Conference and SimBuild Co-organized by ASHRAE and IBPSA-USA, p. 9.
[29]
Luo, Z. , Lu, Y. , Cang, Y. , Yang, L. , 2022. Study on dual-objective optimization method of life cycle energy consumption and economy of office building based on HypE genetic algorithm. Energy Build. 256, 111749.
[30]
Mavromatidis, G. , Orehounig, K. , Bollinger, L.A. , Hohmann, M. , Marquant, J.F. , Miglani, S. , Morvaj, B. , Murray, P. , Waibel, C. , Wang, D. , Carmeliet, J. , 2019. Ten questions concerning modeling of distributed multi-energy systems. Build. Environ. 165.
[31]
Nand, R. , Sharma, B.N. , Chaudhary, K. , 2021. Stepping ahead Firefly Algorithm and hybridization with evolution strategy for global optimization problems. Appl. Soft Comput. 109, 107517.
[32]
Österbring, M. , Mata, É., Thuvander, L. , Mangold, M. , Johnsson, F. , Wallbaum, H. , 2016. A differentiated description of building-stocks for a georeferenced urban bottom-up building-stock model. Energy Build. 120, 78- 84.
[33]
Palani, H. , Karatas, A. , 2022. Holistic approach for reducing occupants’ energy consumption in hotel buildings. J. Clean. Prod. 365, 132679.
[34]
Parham, H. , 2020. DVFS and its architectural simulation models for improving energy efficiency of complex embedded systems in early design phase. Computers 2.
[35]
Qiao, R. , Liu, T. , 2020. Impact of building greening on building energy consumption: a quantitative computational approach. J. Clean. Prod. 246, 119020.
[36]
RIBA , 2021. 2020 RIBA plan of work template. RIBA, 66 Portland Place, London, W1B 1AD. https://riba-prd-assets.azureedge.net/-/media/GatherContent/Business-Benchmarking/Additional-Documents/2020RIBAPlanofWorkoverviewpdf.pdf?revZ4fb72169b1fd4-52a164bdd5f9aa202a.
[37]
Rutten, D. , 2013. Galapagos: on the Logic and Limitations of Generic Solvers, 83. Architectural Design.
[38]
Shen, Y. , Wang, L. , Zhang, R. , Tong, Z. , Ji, G. , Dynamics, F.F. , 2019. EvoMass + GH _ Wind an agile wind-driven building massing design optimization framework. In: Towards a New, Configurable Architecture-Proceedings of the 39th eCAADe Conference, pp. 477-486.
[39]
Slowik, A. , Kwasnicka, H. , 2020. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32, 12363- 12379.
[40]
Tunny docs, n.d. Getting Start | Tunny Docs.
[41]
Urech, P.R.W. , Mughal, M.O. , Bartesaghi-Koc, C. , 2022. A simulation-based design framework to iteratively analyze and shape urban landscapes using point cloud modeling. Comput. Environ. Urban Syst. 91, 101731.
[42]
Waibel, C. , Wortmann, T. , Evins, R. , Carmeliet, J. , 2019. Building energy optimization: an extensive benchmark of global search algorithms. Energy Build. 187, 218- 240.
[43]
Waibel, C. , Zhang, R. , Wortmann, T. , 2021. Physics meets machine learning: coupling FFD with regression models for wind pressure prediction on high-rise facades. In: The 12th Annual Symposium on Simulation for Architecture and Urban Design (SimAUD), p. 9.
[44]
Wang, L. , Zhang, X. , Qi, D. , 2018. Indoor thermal stratification and its statistical distribution. Indoor Air 29.
[45]
Wang, W. , Hong, T. , Xu, X. , Chen, J. , Liu, Z. , Xu, N. , 2019. Forecasting district-scale energy dynamics through integrating building network and long short-term memory learning algorithm. Appl. Energy 248, 217- 230.
[46]
Wang, Z. , Hong, T. , 2020a. Reinforcement learning for building controls: the opportunities and challenges. Appl. Energy 269.
[47]
Wang, Z. , Hong, T. , 2020b. Generating realistic building electrical load profiles through the Generative Adversarial Network (GAN). Energy Build. 224, 110299.
[48]
Wortmann, T. , 2017. Model-based optimization for architectural design: optimizing daylight and glare in grasshopper. Technology Architecture and Design 1, 176- 185.
[49]
Wortmann, T. , Cichocka, J. , Waibel, C. , 2022. Simulation-based optimization in architecture and building engineering-results from an international user survey in practice and research. Energy Build. 259, 111863.
[50]
Wortmann, T. , Fischer, T. , 2020. Does architectural design optimization require multiple objectives?-a critical analysis. In: CAADRIA 2020.
[51]
Wortmann, T. , Nannicini, G. , 2017. Introduction to architectural design optimization. In: City Netorks. Springer Optimization and It’s Application, pp. 259-278.
[52]
Wortmann, T. , Waibel, C. , Nannicini, G. , Evins, R. , Schroepfer, T. , Carmeliet, J. , 2017. Are Genetic Algorithms Really the Best Choice in Building Energy Optimization?.
[53]
Wu, H. , Deng, F. , Tan, H. , 2022. Research on parametric design method of solar photovoltaic utilization potential of nearly zero-energy high-rise residential building based on genetic algorithm. J. Clean. Prod. 368, 133169.
[54]
Xiao, W. , Zhong, W. , Wu, H. , Zhang, T. , 2023. Multiobjective optimization of daylighting, energy, and thermal performance for form variables in atrium buildings in China’s hot summer and cold winter climate. Energy Build. 297, 113476.
[55]
Xie, Y.M. , Felicetti, P. , Tang, J.W. , Burry, M.C. , 2005. Form finding for complex structures using evolutionary structural optimization method. Des. Stud. 26, 55- 72.
[56]
Yan, D. , Feng, X. , Jin, Y. , Wang, C. , 2018. The evaluation of stochastic occupant behavior models from an application-oriented perspective: using the lighting behavior model as a case study. Energy Build. 176, 151- 162.
[57]
Zhang, R. , Waibel, C. , Wortmann, T. , 2020. Aerodynamic shape optimization for high-rise conceptual design. In: Anthropologic-Architecture and Fabrication in the Cognitive Age. Proceedings of the 38th International Online Conference on Education and Research in Computer Aided Architectural Design in Europe, Berlin, Germany, 16th-17th September 2020. eCAADe (Education and Research in Computer Aided Architectural Design in Europe), pp. 37-45.
[58]
Zhang, R. , Xu, X. , Zhai, P. , Liu, K. , Kong, L. , Wang, W. , 2023. Agile and integrated workflow proposal for optimising energy use, solar and wind energy potential, and structural stability of high-rise buildings in early design decisions. Energy Build. , 113692.
[59]
Zhou, Q. , Xue, F. , 2023. Pushing the boundaries of modular-integrated construction: a symmetric skeleton grammar-based multi-objective optimization of passive design for energy savings and daylight autonomy. Energy Build. 296, 113417.

RIGHTS & PERMISSIONS

2024 The Author(s). Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
审图号:GS京(2024)2327号
AI Summary AI Mindmap
PDF(3256 KB)

Accesses

Citations

Detail

Sections
Recommended

/