How urban environments affect public sentiment and physical activity using a cognitive computing framework

Peijin Sun, Hanxu Zhao, Wei Lu

PDF(3737 KB)
PDF(3737 KB)
Front. Archit. Res. ›› 2024, Vol. 13 ›› Issue (5) : 946-959. DOI: 10.1016/j.foar.2023.12.003
RESEARCH ARTICLE

How urban environments affect public sentiment and physical activity using a cognitive computing framework

Author information +
History +

Abstract

Location-based social media data provides a new perspective for understanding the relationship between human behavior and urban environments. However, further research is needed to determine the application of cognitive computing in urban environments and physical activities. This study proposes a cognitive computing framework for urban environments and human activities that extracts knowledge from structured and unstructured data through natural language processing and computer vision techniques. This paper utilizes a Naive Bayes Model constructed based on random reviews, as well as semantic segmentation and instant segmentation algorithms based on convolutional neural networks to obtain information about urban environments and human behavior from social media data and other geospatial resources. This study examines the relationship between the urban environment and residents’ activity, including spatiotemporal behavior, public sentiment, and physical activity. The study found statistically significant results in subgroup analyses regarding the effects of urban environments on sentiment and physical activity, which also exhibited a strong social gradient consistent with traditional findings. This study validates the feasibility of using cognitive computing based on social media data to explore environmental behaviors, providing technical support for updating health promotion policies.

Keywords

Urban environment / Physical activity / Sentiment analysis / Cognitive computing / Social media data

Cite this article

Download citation ▾
Peijin Sun, Hanxu Zhao, Wei Lu. How urban environments affect public sentiment and physical activity using a cognitive computing framework. Front. Archit. Res., 2024, 13(5): 946‒959 https://doi.org/10.1016/j.foar.2023.12.003

References

[1]
Abdul-Rahman, M. , Chan, E.H.W. , Wong, M.S. , Irekponor, V.E. , Abdul-Rahman, M.O. , 2021. A framework to simplify preprocessing location-based social media big data for sustainable urban planning and management. Cities 109, 102986.
CrossRef Google scholar
[2]
Cao, X. , MacNaughton, P. , Deng, Z. , Yin, J. , Zhang, X. , Allen, J.G. , 2018. Using twitter to better understand the spatiotemporal patterns of public sentiment: a case study in Massachusetts, USA. Int. J. Environ. Res. Publ. Health.
CrossRef Google scholar
[3]
Cesare, N. , Nguyen, Q.C. , Grant, C. , Nsoesie, E.O. , 2019. Social media captures demographic and regional physical activity. BMJ open Sport Exerc. Med. 5, e000567.
CrossRef Google scholar
[4]
de Oliveira, T.H.M. , Painho, M. , 2021. In: Mobasheri, A. (Ed.), Open Geospatial Data Contribution towards Sentiment Analysis within the Human Dimension of Smart Cities. Springer International Publishing, Cham, pp. 75-95.
CrossRef Google scholar
[5]
Dorostkar, E. , Najarsadeghi, M. , 2022. How to Evaluate Urban Emotions Using Twitter Social Media? Cities, 127.
CrossRef Google scholar
[6]
Feng, J. , Glass, T.A. , Curriero, F.C. , Stewart, W.F. , Schwartz, B.S. , 2010. The built environment and obesity: a systematic review of the epidemiologic evidence. Health Place 16, 175- 190.
CrossRef Google scholar
[7]
Frias-Martinez, V. , Frias-Martinez, E. , 2014. Spectral clustering for sensing urban land use using Twitter activity. Eng. Appl. Artif. Intell. 35, 237- 245.
CrossRef Google scholar
[8]
García-Palomares, J.C. , Salas-Olmedo, M.H. , Moya-Gómez, B. , Condeço-Melhorado, A. , Gutiérrez, J. , 2018. City dynamics through Twitter: relationships between land use and spatiotemporal demographics. Cities 72, 310- 319.
CrossRef Google scholar
[9]
Grzyb, T. , Kulczyk, S. , 2023. How do ephemeral factors shape recreation along the urban river? A social media perspective. Landsc. Urban Plann. 230, 104638.
CrossRef Google scholar
[10]
Hu, L. , Li, Z. , Ye, X. , 2019. Delineating and modelling activity space using geotagged social media data. Cartogr. Geogr. Inf. Sci. 47.
CrossRef Google scholar
[11]
Hu, L. , Li, Z. , Ye, X. , 2020. Delineating and modeling activity space using geotagged social media data. Cartogr. Geogr. Inf. Sci. 47, 277- 288.
CrossRef Google scholar
[12]
Hu, Q. , Bai, G. , Wang, S. , Ai, M. , 2019. Extraction and monitoring approach of dynamic urban commercial area using check-in data from Weibo. Sustain. Cities Soc. 45, 508- 521.
CrossRef Google scholar
[13]
Hu, Y. , 2019. A semantic and sentiment analysis on online neighborhood reviews for understanding the perceptions of people toward their living. Ann. Assoc. Am. Geogr. 109, 1- 21.
CrossRef Google scholar
[14]
Hu, Y. , Deng, C. , Zhou, Z. , 2019. A semantic and sentiment analysis on online neighborhood reviews for understanding the perceptions of people toward their living environments. Ann. Assoc. Am. Geogr. 109, 1- 21.
CrossRef Google scholar
[15]
Huang, L. , Xia, F. , Chen, H. , Hu, B. , Zhou, X. , Li, C. , Jin, Y. , Xu, Y. , 2023. Reconstructing human activities via coupling mobile phone data with location-based social networks. Travel Behav. Soc. 33, 100606.
CrossRef Google scholar
[16]
Jaidka, K. , Giorgi, S. , Schwartz, H.A. , Kern, M.L. , Ungar, L.H. , Eichstaedt, J.C. , 2020. Estimating geographic subjective well-being from Twitter: a comparison of dictionary and data-driven language methods. Proc. Natl. Acad. Sci. U.S.A. 117, 10165- 10171.
CrossRef Google scholar
[17]
Jussila, J. , Madhala, P. , 2019. Cognitive computing approaches for human activity recognition from tweets-a case study of twitter marketing campaign. In: Research & Innovation Forum, pp. 153-170.
CrossRef Google scholar
[18]
Kim, D. , Han, S. , Son, H. , Lee, D. , 2020. Human Activity Recognition Using Semi-supervised Multi-Modal DEC for Instagram Data, pp. 869-880.
CrossRef Google scholar
[19]
Kumar, A. , Jaiswal, A. , 2022. Scalable intelligent data-driven decision making for cognitive cities. Energy Syst 13, 581- 599.
CrossRef Google scholar
[20]
Labib, S.M. , Lindley, S. , Huck, J.J. , 2020. Spatial dimensions of the influence of urban green-blue spaces on human health: a systematic review. Environ. Res. 180.
CrossRef Google scholar
[21]
Lansley, G. , Longley, P.A. , 2016. The geography of Twitter topics in London. Comput. Environ. Urban Syst. 58, 85- 96.
CrossRef Google scholar
[22]
Liang, H. , Zhang, Q. , 2022. Do social media data indicate visits to tourist attractions? A case study of Shanghai, China. Open House Int. 47, 17- 35.
CrossRef Google scholar
[23]
Lin, Y. , Wood, S.A. , Lawler, J.J. , 2022. The relationship between natural environments and subjective well-being as measured by sentiment expressed on Twitter. Landsc. Urban Plann. 227, 104539.
CrossRef Google scholar
[24]
Liu, S. , Chen, B. , Kuo, A. , 2019. Monitoring physical activity levels using twitter data: infodemiology study. J. Med. Internet Res. 21, e12394.
CrossRef Google scholar
[25]
Liu, S. , Perdew, M. , Lithopoulos, A. , Rhodes, R.E. , 2021. The feasibility of using instagram data to predict exercise identity and physical activity levels: cross-sectional observational study. J. Med. Internet Res. 23, e20954.
CrossRef Google scholar
[26]
Liu, S. , Young, S.D. , 2018. A survey of social media data analysis for physical activity surveillance. J. Forensic Leg. Med. 57, 33- 36.
CrossRef Google scholar
[27]
Liu, X. , Hu, W. , 2019. Attention and sentiment of Chinese public toward green buildings based on Sina Weibo. Sustain. Cities Soc. 44, 550- 558.
CrossRef Google scholar
[28]
Lu, Y. , 2018. Using Google Street View to investigate the association between street greenery and physical activity. Landsc. Urban Plann. 191.
CrossRef Google scholar
[29]
Martín, A., Julián, A.B.A., Cos-Gayón, F. , 2019. Analysis of Twitter messages using big data tools to evaluate and locate the activity in the city of Valencia (Spain). Cities 86, 37- 50.
CrossRef Google scholar
[30]
Mou, N. , Wang, J. , Zheng, Y. , Zhang, L. , Makkonen, T. , Yang, T. , Niu, J. , 2023. Flowers as attractions in urban parks: evidence from social media data. Urban For. Urban Green. 82, 127874.
CrossRef Google scholar
[31]
Mouratidis, K. , 2019. Compact city, urban sprawl, and subjective well-being. Cities 92, 261- 272.
CrossRef Google scholar
[32]
Nguyen, Q.C. , Li, D. , Meng, H.-W., Kath, S. , Nsoesie, E. , Li, F. , Wen, M. , 2016. Building a national neighborhood dataset from geotagged twitter data for indicators of happiness, diet, and physical activity. JMIR public Heal. Surveill. 2, e158. e158.
CrossRef Google scholar
[33]
Niu, H. , Silva, E. , 2023. Understanding temporal and spatial patterns of urban activities across demographic groups through geotagged social media data. Comput. Environ. Urban Syst. 100, 101934.
CrossRef Google scholar
[34]
Plunz, R.A. , Zhou, Y. , Carrasco Vintimilla, M.I. , Mckeown, K. , Yu, T. , Uguccioni, L. , Sutto, M.P. , 2019. Twitter sentiment inNewYorkCity parks as measure of well-being. Landsc. Urban Plann. 189, 235- 246.
CrossRef Google scholar
[35]
Rashidi, T.H. , Abbasi, A. , Maghrebi, M. , Hasan, S. , Waller, T.S. , 2017. Exploring the capacity of social media data for modelling travel behaviour: opportunities and challenges. Transport. Res. C Emerg. Technol. 75, 197- 211.
CrossRef Google scholar
[36]
Sakouhi, T. , Akaichi, J. , 2020. Dynamic and multi-source semantic annotation of raw mobility data using geographic and social media data. Pervasive Mob. Comput. 71, 101310.
CrossRef Google scholar
[37]
Salazar-Miranda, A. , Heine, C. , Duarte, F. , Schechtner, K. , Ratti, C. , 2022. Measuring the impact of slow zones on street life using social media. Cities 131, 104010.
CrossRef Google scholar
[38]
Sangwan, S.R. , Bhatia, M.P.S. , 2022. Soft computing for abuse detection using cyber-physical and social big data in cognitive smart cities. Expet Syst. 39, e12766.
CrossRef Google scholar
[39]
Santos, H. , Pereira, G.V. , Budde, M. , Lopes, S.F. , Nikolic, P. , 2020. Cognitive systems for urban planning: a literature review. In: Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing AG, Switzerland, pp. 249-270. Switzerland.
CrossRef Google scholar
[40]
Seth, R. , Sharaff, A. , 2023. Sentiment data analysis for detecting social sense after COVID-19 using hybrid optimization method. SN comput. Science 4.
CrossRef Google scholar
[41]
Srivani, M. , Murugappan, A. , Mala, T. , 2023. Cognitive computing technological trends and future research directions in healthcare - a systematic literature review. Artif. Intell. Med. 138, 102513.
CrossRef Google scholar
[42]
Steiger, E. , Westerholt, R. , Resch, B. , Zipf, A. , 2015. Twitter as an indicator for whereabouts of people? Correlating Twitter with UK census data. Comput. Environ. Urban Syst. 54, 255- 265.
CrossRef Google scholar
[43]
Sun, P. , Lu, W. , Song, Y. , Gu, Z. , 2019. Influences of built environment with hilly terrain on physical activity in dalian , China : an analysis of mediation by perceptions and moderation by social environment. Int. J. Environ. Res. Publ. Health 16, 1- 17.
[44]
Wang, D. , Tong, X. , Dai, C. , Guo, C. , Lei, Y. , Qiu, C. , Li, H. , Sun, Y. , 2023. Voxel modeling and association of ubiquitous spatiotemporal information in natural language texts. Int. J. Digit. Earth 16, 868- 890.
CrossRef Google scholar
[45]
Wang, P. , Wang, J. , Yuan, X. , Yang, S. , Wang, X. , Sun, Y. , Ma, C. , Li, W. , Fu, S. , 2022. The relationship between exercise behavior and mental health during the COVID-19 epidemic: research based on the weibo exercise behavior user dictionary. Curr. Psychol. Aug 1-14.
CrossRef Google scholar
[46]
Xu, Y. , Li, J. , Xue, J. , Park, S. , Li, Q. , 2021. Tourism geography through the lens of time use: a computational framework using fine-grained mobile phone data. Ann. Assoc. Am. Geogr. 111, 1420- 1444.
CrossRef Google scholar
[47]
Yang, L. , Marmolejo Duarte, C. , Martí Ciriquián, P. , 2022. Quantifying the relationship between public sentiment and urban environment in Barcelona. Cities 130, 103977.
CrossRef Google scholar
[48]
Yao, F. , Wang, Y. , 2020. Towards resilient and smart cities: a realtime urban analytical and geo-visual system for social media streaming data. Sustain. Cities Soc. 63, 102448.
CrossRef Google scholar
[49]
Zhang, Y. , Yan, S. , Liu, J. , Xu, P. , 2023. Popularity influence mechanism of creative industry parks: a semantic analysis based on social media data. Sustain. Cities Soc. 90, 104384.
CrossRef Google scholar
[50]
Zheng, J. , Hu, M. , Wang, C. , Wang, S. , Han, B. , Wang, H. , 2022. Spatial patterns of residents’ daily activity space and its influencing factors based on the CatBoost model: a case study of Nanjing, China. Front. Archit. Res. 11.
CrossRef Google scholar
[51]
Zuniga-Teran, A. , Orr, B.J. , Gimblett, R. , Chalfoun, N. , Marsh, S. , Guertin, D. , Going, S. , 2017. Designing healthy communities: testing the walkability model. Front. Archit. Res. 6.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s). Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
AI Summary AI Mindmap
PDF(3737 KB)

Accesses

Citations

Detail

Sections
Recommended

/