RESEARCH ARTICLE

Time to most recent common ancestor for stationary continuous state branching processes with immigration

Expand
  • School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received date: 08 Apr 2013

Accepted date: 13 Dec 2013

Published date: 01 Apr 2014

Abstract

Motivated by sample path decomposition of the stationary continuous state branching process with immigration, a general population model is considered using the idea of immortal individual. We compute the joint distribution of the random variables: the time to the most recent common ancestor (MRCA), the size of the current population, and the size of the population just before MRCA. We obtain the bottleneck effect as well. The distribution of the number of the oldest families is also established. These generalize the results obtained by Y. T. Chen and J. F. Delmas.

Cite this article

BI Hongwei . Time to most recent common ancestor for stationary continuous state branching processes with immigration[J]. Frontiers of Mathematics in China, 2014 , 9(2) : 239 -260 . DOI: 10.1007/s11464-014-0354-x

References

1 Abraham R, Delmas J F. The forest associated with the record process on a Lévy tree. Stochastic Process Appl, 2013, 123: 3497-3517
doi: 10.1016/j.spa.2013.04.017
2 Abraham R, Delmas J F, Hoscheit P. Exit times for an increasing Lévy tree-valued process. arXiv: 1202.5463
3 Aldous D. The continuum random tree I. Ann. Probab., 1991, 19(1): 1-28
doi: 10.1214/aop/1176990534
4 Aldous D. The continuum random tree III. Ann Probab, 1993, 21(1): 248-289
doi: 10.1214/aop/1176989404
5 Aliev S A. A limit theorem for the Galton-Watson branching processes with immigration. Ukrainian Math J, 1985, 37: 535-438
doi: 10.1007/BF01061184
6 Aliev S A, Shchurenkov V M. Transitional phenomena and the convergence of Galton-Watson processes to Jiřina processes. Theory Probab Appl, 1982, 27: 472-485
doi: 10.1137/1127057
7 Berestycki J, Berestycki N, Limic V. A small time coupling between Λ-coalescent and branching processes. arXiv: 1101.1875
8 Chen Y T, Delmas J F. Smaller population size at the MRCA time for stationary branching processes. Ann Probab, 2012, 40(5): 2034-2068
doi: 10.1214/11-AOP668
9 Duquesne T, Le Gall J F. Random Trees, Lévy Processes and Spatial Branching Processes. Paris: Astérisque, 2002
10 Duquesne T, Le Gall J F. Probabilistic and fractal aspects of Lévy trees. Probab Theory Related Fields, 2005, 131(4): 553-603
doi: 10.1007/s00440-004-0385-4
11 Evans S N, Ralph P L. Dynamics of the time to the most recent common ancestor in a large branching population. Ann Appl Probab, 2010, 20(1): 1-25
doi: 10.1214/09-AAP616
12 Fitzsimmons P J, Fristedt B, Shepp L A. The set of real numbers left uncovered by random covering intervals. Z Wahrsch Verw Gebiete, 1985, 70: 175-189
doi: 10.1007/BF02451427
13 Fitzsimmons P J, Taksar M. Stationary regenerative sets and subordinators. Ann Probab, 1988, 16(3): 1299-1305
doi: 10.1214/aop/1176991692
14 Foucart C, Bravo G U. Local extinction in continuous state branching processes with immigration. arXiv: 1211.3699
15 Foucart C, Hénard O. Stable continuous-state branching processes with immigration and Beta-Fleming-Viot processes with immigration. Electron J Probab, 2013, 23: 1-21
16 Jirina M. Stochastic branching processes with continuous state space. Czech Math J, 1958, 83(8): 292-312 260 Hongwei BI
17 Kawazu K, Watanabe S. Branching processes with immigration and related limit theorems. Theory Probab Appl, 1971, 83(8): 36-54
doi: 10.1137/1116003
18 Kingman J F C. On the genealogy of large populations. J Appl Probab, 1982, 19: 27-43
doi: 10.2307/3213548
19 Kingman J F C. The coalescent. Stochastic Process Appl, 1982, 13(3): 235-248
doi: 10.1016/0304-4149(82)90011-4
20 Lambert A. Coalescence times for the branching process. Adv Appl Probab, 2007, 35(4): 1071-1089
doi: 10.1239/aap/1067436335
21 Lamperti J. The limit of a sequence of branching processes. Probab Theory Related Fields, 1967, 7(4): 271-288
22 Li Z. A limit theorem for discrete Galton-Watson branching processes with immigration. J Appl Probab, 2006, 43: 289-295
doi: 10.1239/jap/1143936261
23 Li Z. Measure-valued branching Markov processes. Berlin: Springer, 2011
doi: 10.1007/978-3-642-15004-3
24 Li Z. Continuous-state Branching Processes. Lecture Notes, Beijing Normal University. arXiv: 1202.3223
25 Pitman J. Coalescents with multiple collisions. Ann Probab, 1999, 27: 1870-1902
doi: 10.1214/aop/1022677552
26 Sagitov S. The general coalescent with asynchronous mergers of ancestral lines. J Appl Probab, 1999, 36: 1116-1125
doi: 10.1239/jap/1032374759
27 Taksar M I. Regenerative sets on real line. In: Azéma J, Yor M, eds. Séminaire de Probabilités XIV, 1978/79. Lecture Notes in Mathematics, Vol 784. New York: Springer, 1980, 437-474
doi: 10.1007/BFb0089508
Outlines

/