Frontiers of Mathematics in China >
Time to most recent common ancestor for stationary continuous state branching processes with immigration
Received date: 08 Apr 2013
Accepted date: 13 Dec 2013
Published date: 01 Apr 2014
Motivated by sample path decomposition of the stationary continuous state branching process with immigration, a general population model is considered using the idea of immortal individual. We compute the joint distribution of the random variables: the time to the most recent common ancestor (MRCA), the size of the current population, and the size of the population just before MRCA. We obtain the bottleneck effect as well. The distribution of the number of the oldest families is also established. These generalize the results obtained by Y. T. Chen and J. F. Delmas.
BI Hongwei . Time to most recent common ancestor for stationary continuous state branching processes with immigration[J]. Frontiers of Mathematics in China, 2014 , 9(2) : 239 -260 . DOI: 10.1007/s11464-014-0354-x
1 | Abraham R, Delmas J F. The forest associated with the record process on a Lévy tree. Stochastic Process Appl, 2013, 123: 3497-3517 doi: 10.1016/j.spa.2013.04.017 |
2 | Abraham R, Delmas J F, Hoscheit P. Exit times for an increasing Lévy tree-valued process. arXiv: 1202.5463 |
3 | Aldous D. The continuum random tree I. Ann. Probab., 1991, 19(1): 1-28 doi: 10.1214/aop/1176990534 |
4 | Aldous D. The continuum random tree III. Ann Probab, 1993, 21(1): 248-289 doi: 10.1214/aop/1176989404 |
5 | Aliev S A. A limit theorem for the Galton-Watson branching processes with immigration. Ukrainian Math J, 1985, 37: 535-438 doi: 10.1007/BF01061184 |
6 | Aliev S A, Shchurenkov V M. Transitional phenomena and the convergence of Galton-Watson processes to Jiřina processes. Theory Probab Appl, 1982, 27: 472-485 doi: 10.1137/1127057 |
7 | Berestycki J, Berestycki N, Limic V. A small time coupling between Λ-coalescent and branching processes. arXiv: 1101.1875 |
8 | Chen Y T, Delmas J F. Smaller population size at the MRCA time for stationary branching processes. Ann Probab, 2012, 40(5): 2034-2068 doi: 10.1214/11-AOP668 |
9 | Duquesne T, Le Gall J F. Random Trees, Lévy Processes and Spatial Branching Processes. Paris: Astérisque, 2002 |
10 | Duquesne T, Le Gall J F. Probabilistic and fractal aspects of Lévy trees. Probab Theory Related Fields, 2005, 131(4): 553-603 doi: 10.1007/s00440-004-0385-4 |
11 | Evans S N, Ralph P L. Dynamics of the time to the most recent common ancestor in a large branching population. Ann Appl Probab, 2010, 20(1): 1-25 doi: 10.1214/09-AAP616 |
12 | Fitzsimmons P J, Fristedt B, Shepp L A. The set of real numbers left uncovered by random covering intervals. Z Wahrsch Verw Gebiete, 1985, 70: 175-189 doi: 10.1007/BF02451427 |
13 | Fitzsimmons P J, Taksar M. Stationary regenerative sets and subordinators. Ann Probab, 1988, 16(3): 1299-1305 doi: 10.1214/aop/1176991692 |
14 | Foucart C, Bravo G U. Local extinction in continuous state branching processes with immigration. arXiv: 1211.3699 |
15 | Foucart C, Hénard O. Stable continuous-state branching processes with immigration and Beta-Fleming-Viot processes with immigration. Electron J Probab, 2013, 23: 1-21 |
16 | Jirina M. Stochastic branching processes with continuous state space. Czech Math J, 1958, 83(8): 292-312 260 Hongwei BI |
17 | Kawazu K, Watanabe S. Branching processes with immigration and related limit theorems. Theory Probab Appl, 1971, 83(8): 36-54 doi: 10.1137/1116003 |
18 | Kingman J F C. On the genealogy of large populations. J Appl Probab, 1982, 19: 27-43 doi: 10.2307/3213548 |
19 | Kingman J F C. The coalescent. Stochastic Process Appl, 1982, 13(3): 235-248 doi: 10.1016/0304-4149(82)90011-4 |
20 | Lambert A. Coalescence times for the branching process. Adv Appl Probab, 2007, 35(4): 1071-1089 doi: 10.1239/aap/1067436335 |
21 | Lamperti J. The limit of a sequence of branching processes. Probab Theory Related Fields, 1967, 7(4): 271-288 |
22 | Li Z. A limit theorem for discrete Galton-Watson branching processes with immigration. J Appl Probab, 2006, 43: 289-295 doi: 10.1239/jap/1143936261 |
23 | Li Z. Measure-valued branching Markov processes. Berlin: Springer, 2011 doi: 10.1007/978-3-642-15004-3 |
24 | Li Z. Continuous-state Branching Processes. Lecture Notes, Beijing Normal University. arXiv: 1202.3223 |
25 | Pitman J. Coalescents with multiple collisions. Ann Probab, 1999, 27: 1870-1902 doi: 10.1214/aop/1022677552 |
26 | Sagitov S. The general coalescent with asynchronous mergers of ancestral lines. J Appl Probab, 1999, 36: 1116-1125 doi: 10.1239/jap/1032374759 |
27 | Taksar M I. Regenerative sets on real line. In: Azéma J, Yor M, eds. Séminaire de Probabilités XIV, 1978/79. Lecture Notes in Mathematics, Vol 784. New York: Springer, 1980, 437-474 doi: 10.1007/BFb0089508 |
/
〈 | 〉 |