Class of representations of skew derivation Lie algebra over quantum torus

Expand
  • School of Mathematical Sciences, Xiamen University

Published date: 05 Mar 2008

Abstract

Let L be the skew derivation Lie algebra of the quantum torus Cq. In this paper, we give a class of irreducible representations for L with infinite dimensional weight spaces.

Cite this article

YU Nina . Class of representations of skew derivation Lie algebra over quantum torus[J]. Frontiers of Mathematics in China, 2008 , 3(1) : 119 -131 . DOI: 10.1007/s11464-008-0003-3

References

1. Berman S Gao Y Krylyuk Y S Quantum tori and the structure of elliptic quasi-simpleLie algebrasJ Funct Anal 1996 135339389. doi:10.1006/jfan.1996.0013
2. Chen Y Xue M Lin W Structure and automorphism group of a class of derivationLie algebras over quantum torusAnnals Math 2005 26A755764
3. Eswara Rao S Jiang C Classification of irreducibleintegrable representations for the full toroidal Lie-algebraJ Pure Appl Algebra 2005 2007185. doi:10.1016/j.jpaa.2004.12.051
4. Eswara Rao S A classof integrable modules for the core of EALA coordinatized by quantumtoriJ Algebra 2004 2755974. doi:10.1016/j.jalgebra.2004.01.003
5. Eswara Rao S Irreduciblerepresentations of the Lie-algebra of the diffeomorphisms of a d-dimensional torusJ Algebra 1996 182401421. doi:10.1006/jabr.1996.0177
6. Kirkman E Procesi C Small L A q-analog for the VirasoroalgebraComm Algebra 1994 2237553774. doi:10.1080/00927879408825052
7. Larsson T A Conformalfields: A class of representations of Vcet(N)Internat J Modern Phys A7 1992 2664936508. doi:10.1142/S0217751X92002970
8. Lin W Tan S Representations of the Liealgebra of derivations for quantum torusJ Algebra 2004 275250274. doi:10.1016/j.jalgebra.2003.12.021
9. Lin W Tan S Representations of the Liealgebra of skew derivations on quantum torusAdv Math 2005 34477489
10. Lin W Tan S Central extension and derivationsof the Lie algebras of skew derivations for the quantum torusComm Algebras 2005 1139193938. doi:10.1080/00927870500261066
11. Lin W Tan S Nonzero level Harish-Chandramodules over the Virasoro-like algebraJPure Appl Algebra 2006 20490105. doi:10.1016/j.jpaa.2005.03.002
12. Lin W Tan S Harish-Chandra modules forthe q-analog Virasoro-like algebraJ Algebra 2006 297254272. doi:10.1016/j.jalgebra.2005.09.010
13. Shen G Gradedmodules of graded Lie algebras of Cartan type (I)Scientia Sinica A 1986 29(6)570581
Outlines

/