Concentrating solutions of some singularly perturbed elliptic equations

Expand
  • SISSA, via Beirut 2-4

Published date: 05 Jun 2008

Abstract

We study singularly perturbed elliptic equations arising from models in physics or biology, and investigate the asymptotic behavior of some special solutions. We also discuss some connections with problems arising in differential g

Cite this article

MALCHIODI Andrea . Concentrating solutions of some singularly perturbed elliptic equations[J]. Frontiers of Mathematics in China, 2008 , 3(2) : 239 -252 . DOI: 10.1007/s11464-008-0015-z

References

1. Ambrosetti A Badiale M Cingolani S Semiclassical states of nonlinear Schrödinger equationsArch Rational Mech Anal 1997 140285300. doi:10.1007/s002050050067
2. Ambrosetti A Felli V Malchiodi A Ground states of nonlinear Schrödinger equations withpotentials vanishing at infinityJ Eur MathSoc 2005 7117144
3. Ambrosetti A Malchiodi A Perturbation Methods and SemilinearElliptic Problems on RN. Progr in Math, 240BostonBirkhäuser 2005
4. Ambrosetti A Malchiodi A Ni W M Singularly perturbed elliptic equations with symmetry:Existence of solutions concentrating on spheres, Part IComm Math Phys 2003 235427466. doi:10.1007/s00220‐003‐0811‐y
5. Ambrosetti A Malchiodi A Ni W M Singularly perturbed elliptic equations with symmetry:Existence of solutions concentrating on spheres, Part IIIndiana Univ Math J 2004 53(2)297329. doi:10.1512/iumj.2004.53.2400
6. Ambrosetti A Malchiodi A Ruiz D Bound states of nonlinear Schrödinger equations withpotentials vanishing at infinityJ d'AnalyseMath 2006 98317348
7. Ambrosetti A Malchiodi A Secchi S Multiplicity results for some nonlinear singularly perturbedelliptic problems on RNArch Rat Mech Anal 2001 159(3)253271. doi:10.1007/s002050100152
8. Arioli G Szulkin A A semilinear Schrödingerequation in the presence of a magnetic fieldArch Rat Mech Anal 2003 170277295. doi:10.1007/s00205‐003‐0274‐5
9. Badiale M D'Aprile T Concentration around a spherefor a singularly perturbed Schrödinger equationNonlinear Anal, Ser A: Theory Methods 2002 49(7)947985. doi:10.1016/S0362‐546X(01)00717‐9
10. Bartsch T Peng S Semiclassical symmetric Schrödingerequations: existence of solutions concentrating simultaneously onseveral spheresZ Angew Math Phys 2007 58(5)778804. doi:10.1007/s00033‐006‐5111‐x
11. Benci V D'Aprile T The semiclassical limit ofthe nonlinear Schrödinger equation in a radial potentialJ Differential Equations 2002 184(1)109138. doi:10.1006/jdeq.2001.4138
12. Berestycki H Lions P -L Nonlinear scalar field equations.I. Existence of a ground stateArch RationMech Anal 1983 82(4)313345
13. Berestycki H Lions P -L Nonlinear scalar field equations.II. Existence of infinitely many solutionsArch Ration Mech Anal 1983 82(4)347375
14. Byeon J Wang Z Q Standing waves with a criticalfrequency for nonlinear Schrödinger equationsArch Ration Mech Anal 2002 165295316. doi:10.1007/s00205‐002‐0225‐6
15. Casten R G Holland C J Instability results for reactiondiffusion equations with Neumann boundary conditionsJ Diff Eq 1978 27(2)266273. doi:10.1016/0022‐0396(78)90033‐5
16. Dancer E N Stableand finite Morse index solutions on RN or on bounded domains with small diffusionTrans Amer Math Soc 2005 357(3)12251243. doi:10.1090/S0002‐9947‐04‐03543‐3
17. Dancer E N Yan S Multipeak solutions for a singularlyperturbed Neumann problemPacific J Math 1999 189(2)241262
18. Dancer E N Yan S A new type of concentrationsolutions for a singularly perturbed elliptic problemTrans Amer Math Soc 2007 359(4)17651790. doi:10.1090/S0002‐9947‐06‐04386‐8
19. D'Aprile T Ona class of solutions with non-vanishing angular momentum for nonlinearSchrödinger equationsDiff Int Equ 2003 16(3)349384
20. Del Pino M Felmer P Local mountain passes for semilinearelliptic problems in unbounded domainsCalcVar 1996 4121137
21. Del Pino M Felmer P Semi-classical states for nonlinearschrödinger equationsJ Funct Anal 1997 149245265. doi:10.1006/jfan.1996.3085
22. Del Pino M Felmer P Wei J On the role of the mean curvature in some singularly perturbedNeumann problemsSIAM J Math Anal 1999 316379. doi:10.1137/S0036141098332834
23. Del Pino M Kowalczyk M Wei J Concentration at curves for nonlinear SchrödingerequationsComm Pure Appl Math 2007 60(1)113146. doi:10.1002/cpa.20135
24. Floer A Weinstein A Nonspreading wave packets forthe cubic Schrödinger equation with a bounded potentialJ Funct Anal 1986 69397408. doi:10.1016/0022‐1236(86)90096‐0
25. Gierer A Meinhardt H A theory of biological patternformationKybernetik (Berlin) 1972 123039. doi:10.1007/BF00289234
26. Grossi M Someresults on a class of nonlinear Schrödinger equationsMath Zeit 2000 235687705. doi:10.1007/s002090000158
27. Grossi M Pistoia A Wei J Existence of multipeak solutions for a semilinear Neumannproblem via nonsmooth critical point theoryCalc Var Partial Differential Equations 2000 11(2)143175. doi:10.1007/PL00009907
28. Gui C Multipeaksolutions for a semilinear Neumann problemDuke Math J 1996 84739769. doi:10.1215/S0012‐7094‐96‐08423‐9
29. Gui C Wei J On multiple mixed interiorand boundary peak solutions for some singularly perturbed NeumannproblemsCanad J Math 2000 52(3)522538
30. Gui C Wei J Winter M Multiple boundary peak solutions for some singularly perturbedNeumann problemsAnn Inst H PoincaréAnal Non Linéaire 2000 17(1)4782. doi:10.1016/S0294‐1449(99)00104‐3
31. Jeanjean L Tanaka K A positive solution for a nonlinearSchrödinger equation on RNIndiana UnivMath J 2005 54(2)443464. doi:10.1512/iumj.2005.54.2502
32. Kato T PerturbationTheory for Linear Operators. 2nd ed. Grundlehren der MathematischenWissenschaften, Band 132.Berlin-NewYorkSpringer-Verlag 1976
33. Kwong M K Uniquenessof positive solutions of -Δu + u + up = 0 in RNArch Ration Mech Anal 1989 105243266. doi:10.1007/BF00251502
34. Li Y Y Ona singularly perturbed equation with Neumann boundary conditionsComm Partial Differential Equations 1998 23487545
35. Li Y Y Nirenberg L The Dirichlet problem for singularlyperturbed elliptic equationsComm Pure ApplMath 1998 5114451490. doi:10.1002/(SICI)1097‐0312(199811/12)51:11/12<1445::AID‐CPA9>3.0.CO;2‐Z
36. Lin C S Ni W -M Takagi I Large amplitude stationary solutions to a chemotaxis systemsJ Differential Equations 1988 72127. doi:10.1016/0022‐0396(88)90147‐7
37. Mahmoudi F Malchiodi A Concentration on minimal submanifoldsfor a singularly perturbed Neumann problemAdv in Math 2007 209-2460525. doi:10.1016/j.aim.2006.05.014
38. Mahmoudi F Mazzeo R Pacard F Constant mean curvature hypersurfaces condensing alonga submanifoldGeom Funct Anal 2006 16924958. doi:10.1007/s00039‐006‐0566‐7
39. Malchiodi A Concentrationat curves for a singularly perturbed Neumann problem in three-dimensionaldomainsGeometric and Functional Analysis 2005 15-611621222
40. Malchiodi A Montenegro M Boundary concentration phenomenafor a singularly perturbed elliptic problemComm Pure Appl Math 2002 1515071568. doi:10.1002/cpa.10049
41. Malchiodi A Montenegro M Multidimensional boundary-layersfor a singularly perturbed Neumann problemDuke Math J 2004 124(1)105143. doi:10.1215/S0012‐7094‐04‐12414‐5
42. Malchiodi A Ni W M Wei J Multiple clustered layer solutions for semilinear Neumannproblems on a ballAnn Inst H PoincaréAnal Non Linéaire 2005 22143163. doi:10.1016/j.anihpc.2004.05.003
43. Malchiodi A Ni W M Wei J Boundary clustered interfaces for the Allen-Cahn equationPacific J of Math 2007 229(2)447468
44. Malchiodi A Wei J Boundary interface for theAllen-Cahn equationJ Fixed Point TheoryandAppl (in press)
45. Matano H Asymptoticbehavior and stability of solutions of semilinear diffusion equationsPubl Res Inst Math Sci 1979 15(2)401454. doi:10.2977/prims/1195188180
46. Mazzeo R Pacard F Foliations by constant meancurvature tubesComm Anal Geom 2005 13(4)633670
47. Molle R Passaseo D Concentration phenomena forsolutions of superlinear elliptic problemsAnn Inst H Poincaré Anal Non Linéaire 2006 23(1)6384. doi:10.1016/j.anihpc.2005.02.002
48. Nardulli S Leprofil isopérimétrique des variétés riemanniennescompactes pour les petits volumesPh D thesisUniversit Paris-Sud XI, Orsay 2006
49. Ni W M Diffusion,cross-diffusion, and their spike-layer steady statesNotices Amer Math Soc 1998 45(1)918
50. Ni W M Takagi I On the shape of least-energysolution to a semilinear Neumann problemComm Pure Appl Math 1991 41819851. doi:10.1002/cpa.3160440705
51. Ni W M Takagi I Locating the peaks of least-energysolutions to a semilinear Neumann problemDuke Math J 1993 70247281. doi:10.1215/S0012‐7094‐93‐07004‐4
52. Ni W M Takagi I Yanagida E Stability of least energy patterns of the shadow systemfor an activator-inhibitor model. Recent topics in mathematics movingtoward science and engineeringJapan J IndustAppl Math 2001 18(2)259272
53. Oh Y -G On positive multi-lump bound states of nonlinear Schrödingerequations under multiple well potentialsComm Math Phys 1990 131223253. doi:10.1007/BF02161413
54. Strauss W A Existenceof solitary waves in higher dimensionsCommMath Phys 1977 55(2)149162. doi:10.1007/BF01626517
55. Turing A M Thechemical basis of morphogenesisPhil TransRoyal Soc London, Ser B, Biological Sciences 1952 2373772. doi:10.1098/rstb.1952.0012
56. Wang Z -Q On the existence of multiple, single-peaked solutions for a semilinearNeumann problemArch Ration Mech Anal 1992 120375399. doi:10.1007/BF00380322
57. Wei J Onthe boundary spike layer solutions of a singularly perturbed semilinearNeumann problemJ Differential Equations 1997 134104133. doi:10.1006/jdeq.1996.3218
58. Ye R Foliationby constant mean curvature spheresPacificJ Math 1991 147(2)381396
59. Ye R Constantmean curvature foliation: Singularity structure and curvature estimatePacific J Math 1996 174(2)569587
Outlines

/