On completely irreducible operators

Expand
  • Institute of Mathematics, Jilin University, Changchun 130012, China

Published date: 05 Dec 2006

Abstract

Let T be a bounded linear operator on Hilbert space H, M an invariant subspace of T. If there exists another invariant subspace N of T such that H = M + N and MN = 0, then M is said to be a completely reduced subspace of T. If T has a nontrivial completely reduced subspace, then T is said to be completely reducible; otherwise T is said to be completely irreducible. In the present paper we briefly sum up works on completely irreducible operators that have been done by the Functional Analysis Seminar of Jilin University in the past ten years and more. The paper contains four sections. In section 1 the background of completely irreducible operators is given in detail. Section 2 shows which operator in some well-known classes of operators, for example, weighted shifts, Toeplitz operators, etc., is completely irreducible. In section 3 it is proved that every bounded linear operator on the Hilbert space can be approximated by the finite direct sum of completely irreducible operators. It is clear that a completely irreducible operator is a rather suitable analogue of Jordan blocks in L(H), the set of all bounded linear operators on Hilbert space H. In section 4 several questions concerning completely irreducible operators are discussed and it is shown that some properties of completely irreducible operators are different from properties of unicellular operators.

Cite this article

JIANG Zejian, SUN Shanli . On completely irreducible operators[J]. Frontiers of Mathematics in China, 2006 , 1(4) : 569 -581 . DOI: 10.1007/s11464-006-0028-4

Outlines

/