Suppose that H is a subgroup of a finite group G. H is called ?-quasinormal in G if it permutes with every Sylow subgroup of G; H is called ?-quasinormally embedded in G provided every Sylow subgroup of H is a Sylow subgroup of some ?-quasinormal subgroup of G; H is called csupplemented in G if there exists a subgroup N of G such that G = HN and H ∩ N ≤ HG = CoreG(H). In this paper, finite groups G satisfying the condition that some kinds of subgroups of G are either ?-quasinormally embedded or c-supplemented in G, are investigated, and theorems which unify some recent results are given.
LI Yangming, PENG Kangtai
. -quasinormally
embedded and c-supplemented subgroup of finite group[J]. Frontiers of Mathematics in China, 2008
, 3(4)
: 511
-521
.
DOI: 10.1007/s11464-008-0037-6
1. Asaad M . Onmaximal subgroups of finite group. CommAlgebra, 1998, 26(11): 3647–3652. doi:10.1080/00927879808826364
2. Assad M, Ramadan M, Shaalan A . The influence of π-quasinormality of maximal subgroups of Sylow subgroups of Fittingsubgroups of a finite group. Arch Math, 1991, 56: 521–527. doi:10.1007/BF01246766
3. Ballester-Bolinches A, Pedraza-Aquilera MC . Sufficient conditionsfor supersolvability of finite groups. J Pure Appl Algebra, 1998, 127: 113–118. doi:10.1016/S0022-4049(96)00172-7
4. Ballester-Bolinches A, Wang Y, Guo X . c-supplemented subgroups of finite groups. Glasgow Math J, 2000, 42: 383–389. doi:10.1017/S001708950003007X
5. Gross F . Conjugacyof odd order Hall subgroups. Bull LondonMath Soc, 1987, 19: 311–319. doi:10.1112/blms/19.4.311
6. Guo X, Shum K P . On p-nilpotency of finite groups with some subgroups c-supplemented. Algebra Coll, 2003, 10(3): 259–266
7. Huppert B . EndlicheGruppen I. Berlin: Springer-Verlag, 1968
8. Huppert B, Blackburn B . Finite Groups III. Berlin, New York: Springer-Verlag, 1982
9. Kegel O . Sylow-Gruppenund aubnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205–221. doi:10.1007/BF01195169
10. Li S, Li Y . On s-quasinormal and c-normal subgroups of a finite group. Czechoslovak Math J, 2008 (in press)
11. Li Y . Somenote on the minimal subgroups of Fitting subgroup of finite groups. J Pure Applied Algebra, 2002, 171: 289–294. doi:10.1016/S0022-4049(01)00126-8
12. Li Y . Theinfluence of the properties of subgroups on the structure of finitegroup and the relation of π-homogeneityand π′-closure of finitegroup. Dissertation for the Doctoral Degree. Guangzhou: Sun Yat-Sen University, 2002, 1–64
13. Li Y, Wang Y . The influence of minimalsubgroups on the structure of finite groups. Proc Amer Math Soc, 2003, 131: 337–341. doi:10.1090/S0002-9939-02-06547-4
14. Li Y, Wang Y . On π-quasinormally embedded subgroups of finite group. J Algebra, 2004, 281: 109–123. doi:10.1016/j.jalgebra.2004.06.026
15. Li Y, Wang Y . The influence of the propertiesof maximal subgroups on the structure of a finite group. Advances Math, 2007, 36(5): 599–606 (in Chinese)
16. Li Y, Wang Y, Wei H . The influence of π-quasinormality of some subgroups of a finite group. Arch Math, 2003, 81: 245–252. doi:10.1007/s00013-003-0829-6
17. Li Y, Wang Y, Wei H . On p-nilpotentcy offinite groups with some subgroups π-quasinormally embedded. Acta Math Hungar, 2005, 108(4): 283–298. doi:10.1007/s10474-005-0225-8
18. Ramadan M . Influenceof normality on maximal subgroups of Sylow subgroups of a finite groups. Acta Math Hungar, 1992, 59(1–2): 107–110. doi:10.1007/BF00052096
19. Robinson D J S . A Course in the Theory of Groups. NewYork-Berlin: Springer-Verlag, 1993
20. Srinivasan S . Twosufficient conditions for supersolvability of finite groups. Israel J Math, 1980, 35: 210–214. doi:10.1007/BF02761191
21. Wang Y . c-normalityof groups and its properties. J Algebra, 1996, 180: 954–965. doi:10.1006/jabr.1996.0103
22. Wang Y . Finitegroups with some subgroups of Sylow subgroups c-supplemented. J Algebra, 2000, 224: 467–478. doi:10.1006/jabr.1999.8079
23. Wei H, Wang Y . The c-supplemented propertyof finite groups. Proc Edinb Math Soc, 2007, 50: 493–508. doi:10.1017/S0013091504001385
24. Wei H,Wang Y, Li Y . On c-supplemented maximal and minimal subgroups of Sylowsubgroups of finite groups. Proc Amer MathSoc, 2004, 132(8): 2197–2204. doi:10.1090/S0002-9939-04-07296-X
25. Micallef M, Wolfson J . The second variation of areaof minimal surfaces in fourmanifolds. MathAnn, 1993, 295: 245–267. doi:10.1007/BF01444887
26. Mok N . Theuniformization theorem for compact Kähler manifolds of nonnegativeholomorphic bisectional curvature. J DiffGeom, 1988, 27(2): 179–214
27. Poon Y S . Compact self-dual manifolds with positive scalar curvature. J Diff Geom, 1986, 24: 97–132
28. Sacks J, Uhlenback K . The existence of minimalimmersions of 2-spheres. Ann of Math, 1981, 113: 1–24. doi:10.2307/1971131
29. Schoen R, Yau S T . Existence of incompressibleminimal surfaces and the topology of three-dimensional manifolds withnonnegative scalar curvature. Ann of Math, 1979, 110(1): 127–142. doi:10.2307/1971247
30. Sha J -P, Yang D G . Positive Ricci curvatureon the connected sums of Sn × Sm. J Diff Geom, 1991, 33(1): 127–137
31. Siu Y -T, Yau S T . Compact Kähler manifoldsof positive bisectional curvature. InventMath, 1980, 59: 189–204. doi:10.1007/BF01390043
32. Singer I M, Thorpe J A . Lecture Notes on ElementaryTopology and Geometry. Glenview: Scott, Foresman and Co, 1967
33. Simon J . Minimalvarieties in Riemannian manifolds. Annof Math, 1968, 88: 62–105. doi:10.2307/1970556
34. Simon L . Surveylectures on minimal submanifolds. Ann ofMath Stud, 103. Princeton: Princeton Univ Press, 1983, 3–52
35. Tian G, Yau S T . Kähler-Einstein metricson complex surfaces with C1 > 0. Commun Math Phys, 1987, 112: 175–203. doi:10.1007/BF01217685