RESEARCH ARTICLE

Injectivity radius bound of Ricci flow with positive Ricci curvature and applications

  • Li MA , 1 ,
  • Anqiang ZHU 2
Expand
  • 1. Zhongyuan Institute of Mathematics and Department of Mathematics, Henan Normal University, Xinxiang, 453007, China
  • 2. Department of Mathematics, Wuhan University, Wuhan 430072, China

Received date: 09 Nov 2012

Accepted date: 25 Jan 2013

Published date: 01 Oct 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We study the injectivity radius bound for 3-d Ricci flow with bounded curvature. As applications, we show the long time existence of the Ricci flow with positive Ricci curvature and with curvature decay condition at infinity. We partially settle a question of Chow-Lu-Ni [Hamilton’s Ricci Flow, p.302].

Cite this article

Li MA , Anqiang ZHU . Injectivity radius bound of Ricci flow with positive Ricci curvature and applications[J]. Frontiers of Mathematics in China, 0 , 8(5) : 1129 -1137 . DOI: 10.1007/s11464-013-0296-8

1
Anderson M T, Rodriguez L. Minimal surfaces and 3-manifolds of non-negative Ricci curvature. Math Ann, 1989, 284: 284-475

DOI

2
Carron G. Inegalities isoperimetriques de Faber-Krahn et consequences. Sémin Congr, 1996, 1: 205-232

3
Cheeger J, Gromov M, Taylor M. Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J Differential Geom, 1982, 17: 15-53

4
Chow B, Chu S-C, Glickenstein D, Guenther C, Isenberg J, Ivey T, Knopf D, Lu P, Luo F, Ni L. The Ricci flow: The Techniques and Applications. Part I: Geometric Aspects. Mathematical Surveys and Monographs, <BibVersion>Vol 135</BibVersion>. Providence: American Mathematical Society, 2007

5
Chow B, Lu P, Ni L. Hamilton’s Ricci Flow. Beijing: Science Press, Amer Math Soc, 2006

6
Colding T, Minicozzi W III. Minimal Surfaces, Vol 4. New York: Courant Institute of Mathematical Sciences, 1999

7
Hamilton R. Three-manifolds with positive Ricci curvature. J Differential Geom, 1982, 2: 255-306

8
Hamilton R. The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry, <BibVersion>Vol II</BibVersion>. Boston: International Press, 1995, 7-136

9
Hamilton R. Non-singular solutions of the Ricci flow on three-manifolds. Comm Anal Geom, 1999, 7: 695-729

10
Hildebrandt S. Boundary behavior of minimal surfaces. Arch Ration Mech Anal, 1969, 35: 47-82

DOI

11
Huang H. A note on Ricci flow on non-compact manifolds. J Math Study, 2009, 42(4): 351-356

12
Lott J. On the long time behavior of type III Ricci flow solutions. Math Ann, 2007, 339: 627-666

DOI

13
Ma L. A complete proof of Hamilton’s conjecture. http://arxiv.org/abs/1008.1576v1

14
Ma L. Expanding Ricci solitons with pinched Ricci curvature. Kodai Math J, 2011, 34: 140-143

DOI

15
Ma L, Cheng L. Yamabe flow and Myers type theorem on complete manifolds. J Geom Anal,

DOI

16
Ma L, Zhu A. Nonsingular Ricci flow on a noncompact manifold in dimension three. C R Mathematique, 2009, 137(1): 185-190

DOI

17
Morrey C B. The problem of Plateau on a Riemannian manifold. Ann Math, 1948, 49: 807-851

DOI

18
Morrey C B. Multiple Integrals in the Calculus of Variations. Grundlehren Math Wiss, <BibVersion>Vol 130</BibVersion>. Berlin: Springer-Verlag, 1966

19
Perelman G. Finite extinction time for the solutions to the Ricci flow ow on certain three-manifolds. arXiv: math.DG/0307245

20
Rong X C. Almost non-negative curvature vs. collapse in dimension three. Personal communication, 2011

21
Schoen R, Yau S T. Complete three dimensional manifolds with positive Ricci curvature and scalar curvature. In: Yau S T, ed. Seminar on Differential Geometry. Ann of Math Stud, <BibVersion>Vol 102</BibVersion>. Princeton: Princeton University Press, 1982, 209-228

22
Schoen R, Yau S T. Lectures on Differential Geometry. Beijing: Higher Education Press, 2004 (in Chinese)

23
Shi W X. Complete noncompact three manifolds with nonnegative Ricci curvature. J Differential Geom, 1989, 29: 353-360

24
Shi W X. Ricci deformation of metric on complete noncompact Riemannian manifolds. J Differential Geom, 1989, 30: 303-394

25
Yau S T. Isoperimetric constants and the first eigen value of a compact Riemannian manifold. Ann Sci Éc Norm Supér, 1975, 4: 487-507

Options
Outlines

/