RESEARCH ARTICLE

Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion

  • Tomás CARABALLO , 1 ,
  • Mamadou Abdoul DIOP 2
Expand
  • 1. Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain
  • 2. Université Gaston Berger de Saint-Louis, UFR SAT, Département de Mathématiques, 234, Saint-Louis, Sénégal

Received date: 01 Oct 2012

Accepted date: 18 Mar 2013

Published date: 01 Aug 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper deals with the existence and uniqueness of mild solutions to neutral stochastic delay functional integro-differential equations perturbed by a fractional Brownian motion BH, with Hurst parameter H∈ (1/2, 1). We use the theory of resolvent operators developed by R. Grimmer to show the existence of mild solutions. An example is provided to illustrate the results of this work.

Cite this article

Tomás CARABALLO , Mamadou Abdoul DIOP . Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion[J]. Frontiers of Mathematics in China, 2013 , 8(4) : 745 -760 . DOI: 10.1007/s11464-013-0300-3

1
Alos E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 1999, 29: 766-801

2
Bao J, Hou Z. Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients. Comput Math Appl, 2010, 59: 207-214

DOI

3
Boufoussi B, Hajji S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Statist Probab Lett, 2012, 82: 1549-1558

DOI

4
Cao G, He K, Zhang X. Successive approximations of infinite dimensional SDES with jump. Stoch Syst, 2005, 5: 609-619

DOI

5
Caraballo T, Garrido-Atienza M J, Taniguchi T. The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal, 2011, 74: 3671-3684

DOI

6
Caraballo T, Real J, Taniguchi T. The exponential stability of neutral stochastic delay partial differential equations. Discrete Contin Dyn Syst, 2007, 18: 295-313

DOI

7
Govindan T E. Almost sure exponential stability for stochastic neutral partial functional differential equations. Stochastics, 2005, 77: 139-154

DOI

8
Grimmer R. Resolvent operators for integral equations in a Banach space. Trans Amer Math Soc, 1982, 273: 333-349

DOI

9
Jiang F, Shen Y. A note on the existence and uniqueness of mild solutions to neutral stochastic partial functional differential equations with non-Lipschitz coefficients. Comput Math Appl, 2011, 61: 1590-1594

DOI

10
Mishura Y. Stochastic Calculus for Fractional Brownian Motion and Related Topics. Lecture Notes in Mathematics, Vol 1929. Berlin: Springer-Verlag, 2008

DOI

11
Nualart D. The Malliavin Calculus and Related Topics. 2nd ed. Berlin: Springer- Verlag, 2006

12
Taniguchi T. Successive approximations of solutions of stochastic differential equations. J Differential Equations, 1992, 96: 152-169

DOI

13
Tindel S, Tudor C, Viens F. Stochastic evolution equations with fractional Brownian motion. Probab Theory Related Fields, 2003, 127(2): 186-204

DOI

14
Turo J. Successive approximations of solutions to stochastic functional differential equations. Period Math Hungar, 1995, 30: 87-96

DOI

Options
Outlines

/