RESEARCH ARTICLE

Nonnegative tensor factorizations using an alternating direction method

  • Xingju CAI 1 ,
  • Yannan CHEN 1,2 ,
  • Deren HAN , 1
Expand
  • 1. School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province, Nanjing Normal University, Nanjing 210023, China
  • 2. College of Science, Nanjing Forestry University, Nanjing 210037, China

Received date: 07 Feb 2012

Accepted date: 06 Nov 2012

Published date: 01 Feb 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The nonnegative tensor (matrix) factorization finds more and more applications in various disciplines including machine learning, data mining, and blind source separation, etc. In computation, the optimization problem involved is solved by alternatively minimizing one factor while the others are fixed. To solve the subproblem efficiently, we first exploit a variable regularization term which makes the subproblem far from ill-condition. Second, an augmented Lagrangian alternating direction method is employed to solve this convex and well-conditioned regularized subproblem, and two accelerating skills are also implemented. Some preliminary numerical experiments are performed to show the improvements of the new method.

Cite this article

Xingju CAI , Yannan CHEN , Deren HAN . Nonnegative tensor factorizations using an alternating direction method[J]. Frontiers of Mathematics in China, 0 , 8(1) : 3 -18 . DOI: 10.1007/s11464-012-0264-8

1
Acar E, Dunlavy D M, Kolda T G. A scalable optimization approach for fitting canonical tensor decompositions. J Chemometrics, 2011, 25(2): 67–86

DOI

2
Bader B W, Kolda T G. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans Math Software, 2006, 32(4): 635-653

DOI

3
Bader B W, Kolda T G. Efficient MATLAB computations with sparse and factored tensors. SIAM J Sci Comput, 2007, 30(1): 205-231

DOI

4
Benetos E, Kotropoulos C. Non-negative tensor factorization applied to music genre classification. IEEE Trans Audio, Speech, Language Processing, 2010, 18(8): 1955-1967

DOI

5
Benthem M H,Van Keenan M R. Fast algorithm for the solution of large-scale nonnegativity- constrained least squares problems. J Chemometrics, 2004, 18(10): 441-450

DOI

6
Berry M W, Browne M. Email surveillance using non-negative matrix factorization. Comput Math Organization Theory, 2005, 11(3): 249-264

DOI

7
Berry M W, Browne M, Langville A N, Pauca V P, Plemmons R J. Algorithms and applications for approximate nonnegative matrix factorization. Comput Statist Data Anal, 2007, 52(1): 155-173

DOI

8
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. In: Jordan M, ed. Foundations and Trends in Machine Learning, Vol 3. 2011, 1-122. http://www.stanford.edu/˜boyd/papers/admm distr stats.html

9
Bro R, Jong S De. A fast non-negativity-constrained least squares algorithm. J Chemometrics, 1997, 11(5): 393-401

DOI

10
Chen Y, Wang X, Shi C, Lua E K, Fu X M, Deng B X, Li X. Phoenix: a weight-based network coordinate system using matrix factorization. IEEE Trans Network Service Management, 2011, 8(4): 334-347

DOI

11
Cichocki A, Zdunek R, Phan A H, Amari S. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. New York: Wiley, 2009

12
Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Machine Intelligence, 2001, 23(6): 643-660

DOI

13
Han D R, Xu W, Yang H. An operator splitting method for variational inequalities with partially unknown mappings. Numer Math, 2008, 111(2): 207-237

DOI

14
He B S, Liao L Z, Han D R, Yang H. A new inexact alternating directions method for monotone variational inequalities. Math Program, 2002, 92(1): 103-118

DOI

15
He B S, Yang H. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper Res Lett, 1998, 23(3-5): 151-161

DOI

16
He B S, Yang H, Wang S L. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J Optim Theory Appl, 2000, 106(2): 337-356

DOI

17
Kim H, Park H. Sparse non-negative matrix factorizations via alternating nonnegativity- constrained least squares for microarray data analysis. Bioinformatics, 2007, 23(12): 1495-1502

DOI

18
Kim H, Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J Matrix Anal Appl, 2008, 30(2): 713-730

DOI

19
Kim J, Park H. Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM J Sci Comput, 2011, 33(6): -3281

DOI

20
Lawson C L, Hanson R J. Solving Least Squares Problems. Philadelphia: SIAM, 1995

DOI

21
Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401: 788-791

DOI

22
Lee D D, Seung H S. Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst, 2001, 13: 556-562

23
Lee K-C, Ho J, Kriegman D J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Machine Intelligence, 2005, 27(5): 684-698

DOI

24
Lim L-H, Comon P. Nonnegative approximations of nonnegative tensors. J Chemometrics, 2009, 23(7-8): 432-441

DOI

25
Lin C-J. Projected gradient methods for non-negative matrix factorization. Neural Comput, 2007, 19(10): 2756-2779.http://www.csie.ntu.edu.tw/˜cjlin/nmf/index.html

DOI

26
Mao Y, Saul L K, Smith J M. IDES: an internet distance estimation service for large networks. IEEE J Selected Areas Communications, 2006, 24(12): 2273-2284

DOI

27
Nielsen F A, Balslev D, Hansen L K. Mining the posterior cingulate: segregation between memory and pain components. NeuroImage, 2005, 27(3): 520-532

DOI

28
Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmatrics, 1994, 5(2): 111-126

DOI

29
Schmidt M N, Mohamed S. Probabilistic non-negative tensor factorisation using markov chain monte carlo. In: European Signal Processing Conference. 2009, 1918-1922

30
Shashua A, Hazan T. Non-negative tensor factorization with applications to statistics and computer vision. In: Proceedings of the 22nd International Conference on Machine Learning (ICML’05). 2005, 792-799

DOI

31
Smilde A, Bro R, Geladi P. Multi-way Analysis: Applications in the Chemical Sciences. New York: John Wiley & Sons, 2004

DOI

32
Vavasis S A. On the complexity of nonnegative matrix factorization. SIAM J Optim, 2009, 20(3): 1364-1377

DOI

33
Zhang Q, Wang H, Plemmons R, Pauca V P. Spectral unmixing using nonnegative tensor factorization. In: ACM Southeast Regional Conference. New York: ACM, 2007, 531-532

34
Zhang Y. Theory of compressive sensing via l1-minimizatIon: a non-RIP analysis and extensions. Technical Report TR08-11, revised. Department of Computational and Applied Mathematics, Rice University, Houston, Texas. 2008. http://www.caam.rice.edu/˜zhang/reports/tr0811 revised.pdf

35
Zhang Y. An alternating direction algorithm for nonnegative matrix factorization. Techxnical Report TR10-03. Department of Computational and Applied Mathematics, Rice University, Houston, Texas. 2010. http://www.caam.rice.edu/˜zhang/reports/tr1003.pdf

Options
Outlines

/