RESEARCH ARTICLE

Immanant positivity for Catalan-Stieltjes matrices

  • Ethan Y. H. LI ,
  • Grace M. X. LI ,
  • Arthur L. B. YANG ,
  • Candice X. T. ZHANG
Expand
  • Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, China

Received date: 24 Jun 2021

Accepted date: 01 Sep 2021

Published date: 15 Oct 2022

Copyright

2022 Higher Education Press

Abstract

We give some sufficient conditions for the nonnegativity of immanants of square submatrices of Catalan-Stieltjes matrices and their corresponding Hankel matrices. To obtain these sufficient conditions, we construct new planar networks with a recursive nature for Catalan-Stieltjes matrices. As applications, we provide a unified way to produce inequalities for many combinatorial polynomials, such as the Eulerian polynomials, Schröder polynomials, and Narayana polynomials.

Cite this article

Ethan Y. H. LI , Grace M. X. LI , Arthur L. B. YANG , Candice X. T. ZHANG . Immanant positivity for Catalan-Stieltjes matrices[J]. Frontiers of Mathematics in China, 2022 , 17(5) : 887 -903 . DOI: 10.1007/s11464-021-0977-7

1
Aigner M. Catalan-like numbers and determinants. J Combin Theory Ser A, 1999, 87: 33–51

DOI

2
Aigner M. Catalan and other numbers: a recurrent theme. In: Crapo H, Senato D, eds. Algebraic Combinatorics and Computer Science: A Tribute to Gian-Carlo Rota. Berlin: Springer, 2001, 347–390

DOI

3
Aigner M. A Course in Enumeration. Grad Texts in Math, Vol 238. Berlin: Springer, 2007

4
Bennett G. Hausdorff means and moment sequences. Positivity, 2011, 15(1): 17–48

DOI

5
Bonin J, Shapiro L, Simion R. Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths. J Statist Plann Inference, 1993, 34(1): 35–55

DOI

6
Brenti F. Combinatorics and total positivity. J Combin Theory Ser A, 1995, 71(2): 175–218

DOI

7
Chen X, Deb B, Dyachenko A, Gilmore T, Sokal A D. Coefficientwise total positivity of some matrices defined by linear recurrences. Sém Lothar Combin, 2021, 85B: Art 30 (12 pp)

8
Chen X, Liang H Y L, Wang Y. Total positivity of recursive matrices. Linear Algebra Appl, 2015, 471: 383–393

DOI

9
Cryer C W. Some properties of totally positive matrices. Linear Algebra Appl, 1976, 15(1): 1–25

DOI

10
Goulden I P, Jackson D M. Immanants of combinatorial matrices. J Algebra, 1992, 148(2): 305–324

DOI

11
Greene C. Proof of a conjecture on immanants of the Jacobi-Trudi matrix. Linear Algebra Appl, 1992, 171: 65–79

DOI

12
Haiman M. Hecke algebra characters and immanant conjectures. J Amer Math Soc, 1993, 6(3): 569–595

DOI

13
Karlin S. Total Positivity, Vol 1. Stanford: Stanford Univ Press, 1968

14
Liang H Y L, Mu L L, Wang Y. Catalan-like numbers and Stieltjes moment sequences. Discrete Math, 2016, 339(2): 484–488

DOI

15
Littlewood D E. The Theory of Group Characters. Oxford: Clarendon, 1950

16
Pan Q Q, Zeng J. On total positivity of Catalan-Stieltjes matrices. Electron J Combin, 2016, 23(4): P4.33

DOI

17
Petersen T K. Eulerian Numbers. Basel: Birkhäuser, 2015

DOI

18
Shohat J A, Tamarkin J D. The Problem of Moments. Math Surveys Monogr, Vol 1. New York: Amer Math Soc, 1943

DOI

19
Sokal A D. Coefficientwise total positivity (via continued fractions) for some Hankel matrices of combinatorial polynomials. transparencies available at semflajolet.math.cnrs.fr/index.php/Main/2013-2014

20
Stanley R P. Enumerative Combinatorics, Vol 1. 2nd ed. Cambridge Stud Adv Math, Vol 49. Cambridge: Cambridge Univ Press, 2012

21
Stembridge J R. Immanants of totally positive matrices are nonnegative. Bull Lond Math Soc, 1991, 23(5): 422–428

DOI

22
Stembridge J R. Some conjectures for immanants. Canad J Math, 1992, 44(5): 1079–1099

DOI

23
Wang Y, Zhu B X. Log-convex and Stieltjes moment sequences. Adv Appl Math, 2016, 81: 115–127

DOI

24
Widder D V. The Laplace Transform. Princeton Math Ser, Vol 6. Princeton: Princeton Univ Press, 1946

25
Wolfgang H L. Two Interactions Between Combinatorics and Representation Theory: Monomial Immanants and Hochschild Cohomology. Ph D thesis. Cambridge: MIT, 1997

26
Zhu B X. Log-convexity and strong q-log-convexity for some triangular arrays. Adv Appl Math, 2013, 50(4): 595–606

DOI

Outlines

/