Frontiers of Mathematics in China >
Pseudo-orthogonality for graph 1-Laplacian eigenvectors and applications to higher Cheeger constants and data clustering
Received date: 02 Jun 2021
Accepted date: 01 Aug 2021
Copyright
The data clustering problem consists in dividing a data set into prescribed groups of homogeneous data. This is an NP-hard problem that can be relaxed in the spectral graph theory, where the optimal cuts of a graph are related to the eigenvalues of graph 1-Laplacian. In this paper, we first give new notations to describe the paths, among critical eigenvectors of the graph 1-Laplacian, realizing sets with prescribed genus. We introduce the pseudo-orthogonality to characterize m3(G), a special eigenvalue for the graph 1-Laplacian. Furthermore, we use it to give an upper bound for the third graph Cheeger constant h3(G), that is, h3(G) 6 m3(G). This is a first step for proving that the k-th Cheeger constant is the minimum of the 1-Laplacian Raylegh quotient among vectors that are pseudo-orthogonal to the vectors realizing the previous k - 1 Cheeger constants. Eventually, we apply these results to give a method and a numerical algorithm to compute m3(G), based on a generalized inverse power method.
Antonio Corbo ESPOSITO , Gianpaolo PISCITELLI . Pseudo-orthogonality for graph 1-Laplacian eigenvectors and applications to higher Cheeger constants and data clustering[J]. Frontiers of Mathematics in China, 2022 , 17(4) : 591 -623 . DOI: 10.1007/s11464-021-0961-2
1 |
Amghibech S . Eigenvalues of the discrete p-Laplacian for graphs. Ars Combin, 2003, 67: 283- 302
|
2 |
Belloni M , Ferone V , Kawohl B . Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators. Special issue dedicated to Lawrence E. Payne. Z Angew Math Phys, 2003, 54 (5): 771- 783
|
3 |
Belloni M , Kawohl B , Juutinen P . The p-Laplace eigenvalue problem as p → ∞ in a Finsler metric. J Eur Math Soc (JEMS), 2006, 8 (1): 123- 138
|
4 |
Bobkov V , Parini E . On the higher Cheeger problem. J Lond Math Soc (2), 2018, 97 (3): 575- 600
|
5 |
Bühler T , Hein M . Spectral clustering based on the graph p-Laplacian. In: Bottou L, Littman M, eds. Proceedings of the 26th International Conference on Machine Learning (ICML 2009). 2009, 81- 88
|
6 |
Bühler T , Hein M . An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. Adv Neural Inform Process Syst, 2010, 23: 847- 855
|
7 |
Caroccia M . Cheeger N-clusters. Calc Var Partial Differential Equations, 2017, 56(2): Art 30 (35 pp)
|
8 |
Chang K C . Spectrum of the 1-Laplacian and Cheeger’s constant on graphs. J Graph Theory, 2016, 81 (2): 167- 207
|
9 |
Chang K C , Shao S , Zhang D . The 1-Laplacian Cheeger cut: theory and algorithms. J Comput Math, 2015, 33 (5): 443- 467
|
10 |
Chang K C , Shao S , Zhang D . Nodal domains of eigenvectors for 1-Laplacian on graphs. Adv Math, 2017, 308: 529- 574
|
11 |
Chang K C , Shao S , Zhang D , Zhang W . Nonsmooth critical point theory and applications to the spectral graph theory. Sci China Math, 2021, 64 (1): 1- 32
|
12 |
Cheeger J . A lower bound for the smallest eigenvalue of the Laplacian. In: Gunning R C, ed. Problems in Analysis: A Symposium in Honor of Salomon Bochner. Princeton Math Ser, Vol 31. Princeton: Princeton Univ Press, 1970 195- 199
|
13 |
Chung F R K . Spectral Graph Theory. CBMS Reg Conf Ser Math, No 92. Providence: Amer Math Soc, 1997
|
14 |
Cuesta M . Minimax theorems on C1 manifolds via Ekeland variational principle. Abstr Appl Anal, 2003, 2003 (13): 757- 768
|
15 |
Davies E B , Leydold J , Stadler P F . Discrete nodal domain theorems. Linear Algebra Appl, 2001, 336 (1): 51- 60
|
16 |
Della Pietra F , Gavitone N , Piscitelli G . A sharp weighted anisotropic Poincaré inequality for convex domains. C R Math Acad Sci Paris, 2017, 355 (7): 748- 752
|
17 |
Della Pietra F , Gavitone N , Piscitelli G . On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators. Bull Sci Math, 2019, 155: 10- 32
|
18 |
Della Pietra F , Piscitelli G . Saturation phenomena for some classes of nonlinear nonlocal eigenvalue problems. Atti Accad Naz Lincei Rend Lincei Mat Appl, 2020, 30 (1): 131- 150
|
19 |
Drábek P , Robinson S . Resonance problems for the p-Laplacian. J Funct Anal, 1999, 169 (1): 189- 200
|
20 |
Esposito L , Kawohl B , Nitsch C , Trombetti C . The Neumann eigenvalue problem for the ∞-Laplacian. Atti Accad Naz Lincei Rend Lincei Mat Appl, 2015, 26: 119- 134
|
21 |
Juutinen P , Lindqvist P , Manfredi J J . The ∞-eigenvalue problem. Arch Rational Mech Anal, 1999, 148: 89- 105
|
22 |
Kawohl B , Fridman V . Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment Math Univ Carolin, 2003, 44 (4): 659- 667
|
23 |
Kawohl B , Novaga M . The p-Laplace eigenvalue problem as p → 1 and Cheeger sets in a Finsler metric. J Convex Anal, 2008, 15 (3): 623- 634
|
24 |
Lee J R , Gharan S O , Trevisan L . Multiway spectral partitioning and higher-order Cheeger inequalities. J ACM, 2014, 61 (6): 37 (30 pp)
|
25 |
Littig S , Schuricht F . Convergence of the eigenvalues of the p-Laplace operator as p goes to 1. Calc Var Partial Differential Equations, 2014, 49: 707- 727
|
26 |
von Luxburg U . A tutorial on spectral clustering. Stat Comput, 2007, 17 (4): 395- 416
|
27 |
Parini E . An introduction to the Cheeger problem. Surv Math Appl, 2011, 6: 9- 21
|
28 |
Piscitelli G . A nonlocal anisotropic eigenvalue problem. Differential Integral Equations, 2016, 29(11-12): 1001- 1020
|
29 |
Piscitelli G . The anisotropic ∞-Laplacian eigenvalue problem with Neumann boundary conditions. Differential Integral Equations, 2019, 32(11-12): 705- 734
|
30 |
Rabinowitz P H . Minimax methods in critical point theory with applications to differential equations. CBMS Reg Conf Ser Math, No 65. Providence: Amer Math Soc, 1986
|
31 |
Tudisco F , Hein M . A nodal domain theorem and a higher-order Cheeger inequality for the graph p-Laplacian. J Spectr Theory, 2018, 8 (3): 883- 908
|
/
〈 | 〉 |