RESEARCH ARTICLE

Injective coloring of planar graphs with girth 5

  • Yuehua BU , 1,2 ,
  • Piaopiao YE 1
Expand
  • 1. School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
  • 2. Xingzhi College, Zhejiang Normal University, Jinhua 321004, China

Published date: 15 Jun 2022

Copyright

2022 Higher Education Press

Abstract

A coloring of a graph G is injective if its restriction to the neighbour of any vertex is injective. The injective chromatic number Xi(G) of a graph G is the leastk such that there is an injective k-coloring. In this paper, we prove that for each planar graph with g5 and Δ(G)20, χi(G)Δ(G)+3.

Cite this article

Yuehua BU , Piaopiao YE . Injective coloring of planar graphs with girth 5[J]. Frontiers of Mathematics in China, 2022 , 17(3) : 473 -484 . DOI: 10.1007/s11464-022-1018-x

1
Bu Y H, Chen D, Raspaud A, Wang W. Injective coloring of planar graphs. Discrete Appl. Math., 2009, 157(4): 663–672

DOI

2
Bu Y H, Lu K. List injective coloring of planar graphs with girth 5, 6, 8. Discrete Appl. Math., 2013, 161(10/11): 1367–1377

DOI

3
Cranston D, Kim S, Yu G X. Injective colorings of graphs with low average degree. Algorithmica, 2010, 60(3): 553–568

DOI

4
Cranston D, Kim S, Yu G X. Injective colorings of sparse graphs. Discrete Math., 2010, 310(21): 2965–2973

DOI

5
Dong W, Lin W S. Injective coloring of planar graphs with girths 6. Discrete Math., 2013, 313(12): 1302–1311

DOI

6
Dong W, Lin W S. Injective coloring of planar graphs with girths 5. Discrete Math., 2014, 315/316(12): 120–127

DOI

7
Doyon A, Hahn G, Raspaud A. Some bounds on the injective chromatic number of graphs. Discrete Math., 2012, 310(6): 585–590

DOI

8
Hahn G, Kratochvíl J, Širáň J, Sotteau D. On the injective chromatic number of graphs. Discrete Math., 2002, 256(1/2): 179–192

DOI

9
Li R, Xu B G. Injective choosability of planar graphs of girth five and six. Discrete Math., 2012, 312(9): 1260–1265

DOI

10
Lužar B, Škrekovski S, Tancer M. Injective colorings of planar graphs with few colors. Discrete Math., 2009, 309(18): 5636–5649

DOI

Outlines

/