RESEARCH ARTICLE

Gowers norms and pseudorandom measures of subsets

  • Huaning LIU ,
  • Yuchan QI
Expand
  • School of Mathematics, Northwest University, Xi’an 710127, China

Published date: 15 Apr 2022

Copyright

2022 Higher Education Press

Abstract

Let $A \subset {{\Bbb Z}_N}$, and

${f_A}(s) = \left\{ {\begin{array}{*{20}{l}}{1 - \frac{{|A|}}{N},}&{{\rm{for}}\;s \in A,}\\{ - \frac{{|A|}}{N},}&{{\rm{for}}\;s \notin A.}\end{array}} \right.$

We define the pseudorandom measure of order k of the subset A as follows,

Pk(A, N) = $\begin{array}{*{20}{c}}{\max }\\D\end{array}$|$\mathop \Sigma \limits_{n \in {\mathbb{Z}_N}}$fA(n + c1)fA(n + c2) … fA(n + ck)|,

where the maximum is taken over all D = (c1, c2, . . . , ck) ∈ ${\mathbb{Z}^k}$ with 0 ≤ c1 < c2 < … < ckN - 1. The subset A ⊂ ${{\mathbb{Z}_N}}$ is considered as a pseudorandom subset of degree k if Pk(A, N) is “small” in terms of N. We establish a link between the Gowers norm and our pseudorandom measure, and show that “good” pseudorandom subsets must have “small” Gowers norm. We give an example to suggest that subsets with “small” Gowers norm may have large pseudorandom measure. Finally, we prove that the pseudorandom subset of degree L(k) contains an arithmetic progression of length k, where

L(k) = 2·lcm(2, 4, . . . , 2|$\frac{k}{2}$|), for k ≥ 4,

and lcm(a1, a2, . . . , al) denotes the least common multiple of a1, a2, . . . , al.

Cite this article

Huaning LIU , Yuchan QI . Gowers norms and pseudorandom measures of subsets[J]. Frontiers of Mathematics in China, 2022 , 17(2) : 289 -313 . DOI: 10.1007/s11464-022-1012-3

1
Chen Z X . Large families of pseudo-random subsets formed by generalized cyclotomic classes. Monatsh Math, 2010, 161 (2): 161- 172

DOI

2
Dartyge C , Mosaki E , Sárközy A . On large families of subsets of the set of the integers not exceeding N. Ramanujan J, 2009, 18 (2): 209- 229

DOI

3
Dartyge C , Sárközy A . On pseudo-random subsets of the set of the integers not exceeding N. Period Math Hungar, 2007, 54 (2): 183- 200

DOI

4
Dartyge C , Sárközy A . Large families of pseudorandom subsets formed by power residues. Unif Distrib Theory, 2007, 2 (2): 73- 88

5
Dartyge C , Sárközy A , Szalay M . On the pseudo-randomness of subsets related to primitive roots. Combinatorica, 2010, 30 (2): 139- 162

DOI

6
Furstenberg H . Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Analyse Math, 1977, 31 (1): 204- 256

DOI

7
Furstenberg H , Katznelson Y , Ornstein D . The ergodic theoretical proof of Szemerédi’s theorem. Bull Amer Math Soc, 1982, 7 (3): 527- 552

DOI

8
Goubin L , Mauduit C , Sárközy A . Construction of large families of pseudorandom binary sequences. J Number Theory, 2004, 106 (1): 56- 69

DOI

9
Gowers W T . A new proof of Szemerédi’s theorem. Geom Funct Anal, 2001, 11 (3): 465- 588

DOI

10
Green B , Tao T . An inverse theorem for the Gowers U3(G) norm. Proc Edinb Math Soc, 2008, 51 (1): 73- 153

DOI

11
Liu H N . Large family of pseudorandom subsets of the set of the integers not exceeding N. Int J Number Theory, 2014, 10 (5): 1121- 1141

DOI

12
Liu H N , Song E P . A note on pseudorandom subsets formed by generalized cyclotomic classes. Publ Math Debrecen, 2014, 85 (3/4): 257- 271

13
Liu H N , Wang X Y . On the correlation of pseudorandom binary sequences using additive characters. Publ Math Debrecen, 2011, 79 (1/2): 145- 170

14
Mauduit C , Sárközy A . On finite pseudorandom binary sequences, I. measure of pseudorandomness, the Legendre symbol. Acta Arith, 1997, 82 (4): 365- 377

15
Roth K F . On certain sets of integers. J London Math Soc, 1953, 28 (1): 104- 109

16
Szemerédi E . On sets of integers containing no k elements in arithmetic progression. Acta Arith, 1975, 27: 199- 245

DOI

17
Yu K T . On a trigonometric inequality of Vinogradov. J Number Theory, 1994, 49 (3): 287- 294

DOI

Outlines

/