SURVEY ARTICLE

Surviving rate of graphs and Firefighter Problem

  • Weifan WANG ,
  • Jiangxu KONG
Expand
  • Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

Published date: 15 Apr 2022

Copyright

2022 Higher Education Press

Abstract

The Firefighter Problem on a graph can be viewed as a simplified model of the spread of contagion, fire, rumor, computer virus, etc. The fire breaks out at one or more vertices in a graph at the first round, and the fire-fighter chooses some vertices to protect. The fire spreads to all non-protected neighbors at the beginning of each time-step. The process stops when the fire can no longer spread. The Firefighter Problem has attracted considerable attention since it was introduced in 1995. In this paper we provide a survey on recent research progress of this field, including algorithms and complexity, Fire-fighter Problem for special graphs (finite and infinite) and digraphs, surviving rate and burning number of graphs. We also collect some open problems and possible research subjects.

Cite this article

Weifan WANG , Jiangxu KONG . Surviving rate of graphs and Firefighter Problem[J]. Frontiers of Mathematics in China, 2022 , 17(2) : 227 -254 . DOI: 10.1007/s11464-022-1009-y

1
Amir G , Baldasso R , Kozma G . The firefighter problem on polynomial and intermediate growth groups. Discrete Math, 2020, 343 (11): 112077

DOI

2
Bessy S , Bonato A , Janssen J , Rautenbach D , Roshanbin E . Burning a graph is hard. Discrete Appl Math, 2017, 232: 73- 87

DOI

3
Bessy S , Bonato A , Janssen J , Rautenbach D , Roshanbin E . Bounds on the burning number. Discrete Appl Math, 2018, 235: 16- 22

DOI

4
Biebighauser D P , Holte L E , Wagner R M . The firefighter problem for regular infinite directed grids. Involve, 2012, 5 (4): 393- 409

DOI

5
Bonato A , Gunderson K , Shaw A . Burning the plane: Densities of the infinite Cartesian grid. Graphs Combin, 36 (2022), 1311- 1335

6
Bonato A , Janssen J , Roshanbin E . How to burn a graph. Internet Math, 2016, 12 (1-2): 85- 100

DOI

7
Bonato A , Lidbetter T . Bounds on the burning numbers of spiders and path-forests. Theoret Comput Sci, 2019, 794: 12- 19

DOI

8
Bondy J A , Murty U S R . Graph Theory. Berlin: Springer, 2008

9
Cai L Z , Cheng Y , Verbin E , Zhou Y . Surviving rate of graphs with bounded treewidth for the firefighter problem. SIAM J Discrete Math, 2010, 24: 1322- 1335

DOI

10
Cai L Z , Wang W F . The surviving rate of a graph for the firefighter problem. SIAM J Discrete Math, 2009, 23: 1814- 1826

11
Cai L Z , Verbin E , Yang L . Firefighting on trees: (1-1/e)-approximation, fixed parameter tractability and a subexponential algorithm. Lecture Notes in Comput Sci, 2008, 5369: 258- 269

12
Calamoneri T , Petreschi R . L(h, 1)-labeling subclasses of planar graphs. J Parallel Distrib Comput, 2004, 64: 414- 426

DOI

13
Chlebíková J , Chopin M . The Firefighter Problem: A Structural Analysis, Parameterized and Exact Computation. Springer, 2014

14
Chlebíková J , Chopin M . The firefighter problem: further steps in understanding its complexity. Theoret Comput Sci, 2017, 676: 42- 51

DOI

15
Costa V , Dantas S , Douradob M C , Penso L , Rautenbach D . More fires and more fighters. Discrete Appl Math, 2013, 161: 2410- 2419

DOI

16
Costa V , Dantas S , Rautenbach D . Asymptotic surviving rate of trees with multiple fire sources. Discrete Appl Math, 2015, 184: 14- 19

DOI

17
Dean A , English S , Huang T , Krueger R A , Lee A , Mizrahi M , Wheaton-Werle C . Firefighting on the hexagonal grid. Discrete Appl Math, 2021, 305: 16- 22

DOI

18
Devlin M , Hartke S . Fire containment in grids of dimension three and higher. Discrete Appl Math, 2007, 155: 2257- 2268

DOI

19
Dezso Z , Barabasi A L . Halting viruses in scale-free networks. Phys Rev E, 2002, 65: 055103

DOI

20
Duffy C . A collection of algorithmic and complexity results for variants of the firefighter problem. Master’s Thesis, University of Victoria, 2011

21
Duffy C . MacGillivray G. The firefighter problem: saving stes of vertices on cubic graphs. Networks, 2019, 74 (1): 62- 69

22
Esperet L , Heuvel J , Maay F , Sipma F . Fire containment in planar graphs. J Graph Theory, 2013, 73: 267- 279

DOI

23
Eubank S , Guclu H , Kumar V S , Marathe M V , Srinivasan A , Toroczkai Z , Wang N . Modelling disease outbreaks in realistic urban social networks. Nature, 2004, 429 (6988): 180- 184

DOI

24
Feldheim O N , Hod R . 3/2 firefighters are not enough. Discrete Appl Math, 2013, 161: 301- 306

DOI

25
Finbow S , Hartnell B , Li Q , Schmeisser K . On minimizing the effects of fire or a virus on a network. J Combin Math Combin Comput, 2000, 33: 311- 322

26
Finbow S , King A , MacGillivray G , Rizzi R . The firefighter problem for graphs of maximum degree three. Discrete Math, 2007, 307: 2094- 2105

DOI

27
Finbow S , MacGillivray G . The firefighter problem: a survey of results, directions and questions. Australas J Combin, 2009, 43: 57- 77

28
Fogarty P . Catching the fire on grids. Master’s Thesis, University of Vermont, USA, 2003

29
Gavenčiak T , Kratochvíl J , Prałat P . Firefighting on square, hexagonal, and triangular grids. Discrete Math, 2014, 337: 142- 155

DOI

30
Gordinowicz P . Planar graph is on fire. Theoret Comput Sci, 2015, 593: 160- 164

DOI

31
Gordinowicz P . The 2-surviving rate of planar graphs with average degree lower than 9/2. J Graph Theory, 2018, 89: 341- 349

DOI

32
Hartke S G . Attempting to narrow the integrality gap for the firefighter problem on trees. Discrete Methods in Epidemiology, J Abello, G Cormode. DIMACS Series in Discrete Math and Theoret Comput Sci, 2006, 70: 225- 231

33
Hartnell B . Firefighter! An application of domination Presentation at the 25th Manitoba Conference on Combinatorial Mathematics and Computing. University of Manitoba, Winnipeg, Canada, 1995

34
Hartnell B , Li Q . Firefighting on trees: How bad is the greedy algorithm? Congr Numer, 2000, 145: 187- 192

35
Hiller M , Triesch E , Kosrer A . On the burning number of p-caterpillars. manscript, 2019

36
Hu X X , Guo W T , Qi Y M , Kong J X . The edge surviving rate of Halin graphs. Util Math (to appear)

37
King A , MacGillivray G . The firefighter problem for cubic graphs. Discrete Math, 2010, 310: 614- 621

DOI

38
Klein R , Levcopoulos C , Lingas A . Approximation Algorithms for the Geometric Firefighter and Budget Fence Problems. Algorithms, 2018, 11 (4): 45

DOI

39
Kong J X , Wang W F , Zhu X D . The surviving rate of planar graphs. Theoret Comput Sci, 2012, 416: 65- 70

DOI

40
Kong J X , Zhang L Z . A note on the surviving rate of 1-planar graphs. Discrete Math, 2017, 340: 1074- 1079

DOI

41
Kong J X , Zhang L Z . The edge surviving rate of a class of planar graphs for the firefighter problem. J Xiamen Univ Natur Sci, 2015, 54: 854- 857 (in Chinese)

42
Kong J X , Zhang L Z , Wang W F . The surviving rate of digraphs. Discrete Math, 2014, 334: 13- 19

DOI

43
Kong J X , Zhang L Z , Wang W F . Structural properties and surviving rate of planar graphs. Discrete Math Algorithms Appl, 2014, 6 (4): 1450052

DOI

44
Land M R , Lu L Y . An upper bound on the burning number of graphs Lecture Notes in Comput Sci, 10088. Springer, Cham, 2016, 54: 854- 857

45
Lin Y . Decomposition theorems for the treewidth of graphs. J Math Study, 2000, 33 (2): 113- 120

46
Lipton R , Tarjan R . A separator theorem for planar graphs. SIAM J Appl Math, 1979, 36: 177- 189

DOI

47
Liu H Q , Hu X J , Hu X L . Burning number of caterpillars. Discrete Appl Math, 2020, 284: 332- 340

DOI

48
Liu H Q , Zhang R T , Hu X L . Burning number of theta graphs. Appl Math Comput, 2019, 361: 246- 257

49
MacGillivray G , Wang P . On the firefighter problem. J Combin Math Combin Comput, 2003, 47: 83- 96

50
Messinger M E . Firefighting on Infinite Grids. Master’s Thesis, Dalhousie University, Canada, 2004

51
Messinger M E . Average firefighting on infinite grids. Australas J Combin, 2008, 41: 15- 28

52
Mitsche D , Prałat P , Roshanbin E . Burning graphs: a probabilistic perspective. Graphs Combin, 2017, 33: 449- 471

DOI

53
Mitsche D , Prałat P , Roshanbin E Burning number of graph products. Theoret Comput Sci, 2018, 746: 124- 135

DOI

54
Moghbel D . Topics in graph burning and datalog. Doctoral Thesis, Ryerson University, 2020

55
Newman M E , Jensen I , Ziff R M . Percolation and epidemics in a two-dimensional small world. Phys Rev E, 2002, 65 (2): 021904

DOI

56
Pastor-Satorras R , Vespignani A . Epidemic spreading in scale-free networks. Phys Rev Lett, 2001, 86 (14): 3200- 3203

DOI

57
Prałat P . Sparse graphs are not flammable. SIAM J Discrete Math, 2013, 27: 2157- 2166

DOI

58
Prałat P . Graphs with average degree smaller than 30/11 burn slowly. Graphs Combin, 2014, 30: 455- 470

DOI

59
Ramos N , Souza C , Rezende P . A matheuristic for the firefighter problem on graphs. Int Trans Oper Res, 2020, 27 (4): 739- 766

60
Read J M , Keeling M J . Disease evolution on networks: the role of contact structure. Proc Roy Soc London B, 2003, 270 (1516): 699- 708

DOI

61
Scott A , Stege U , Zeh N . Politician’s firefighting. Lecture Notes in Comput Sci, 2006, 4288: 608- 617

62
Sim K A , Tan T S , Wong K B . On the burning number of generalized petersen graphs. Bull Malays Math Sci Soc, 2018, 41: 1657- 1670

DOI

63
Stokstad E . Biologists rush to protect Great Lakes from onslaught of carp. Science, 2010, 327 (5968): 932

DOI

64
Tan T S , Teh W C . Graph burning: tight bounds on the burning numbers of path forests and spiders. Appl Math Comput, 2020, 385: 125447

65
Wang W F , Bao S X , Kong J X . The surviving rate of IC-graphs. J Liaoning Univ Natur Sci, 2018, 45: 331- 337 (in Chinese)

66
Wang W F , Finbow S , Kong J X . The 2-surviving rate of planar graphs without 6-cycles. Theoret Comput Sci, 2014, 518: 22- 31

DOI

67
Wang W F , Finbow S , Wang P . The surviving rate of an infected network. Theoret Comput Sci, 2010, 411: 3651- 3660

DOI

68
Wang W F , Finbow S , Wang P . A lower bound of the surviving rate of a planar graph with girth at least seven. J Comb Optim, 2014, 27: 621- 642

DOI

69
Wang W F , Kong J X , Zhang L Z . The 2-surviving rate of planar graphs without 4- cycles. Theoret Comput Sci, 2012, 457: 158- 165

DOI

70
Wang W F , Lih K W . On the sizes of graphs embeddable in surfaces of nonnegative Euler characteristic and their applications to edge choosability. European J Combin, 2007, 28: 111- 120

DOI

71
Wang W F , Qiu X S , Huang D J . The surviving rate of some oriented planar graphs. J Zhejiang Norm Univ Natur Sci, 2016, 39: 241- 245 (in Chinese)

72
Wang W F , Wu T T , Hu X X , Wang Y Q . Planar graphs without chordal 5-cycles are 2-good. J Comb Optim, 2018, 35: 980- 996

DOI

73
Wang W F , Yue X B , Zhu X D . The surviving rate of an outerplanar graph for the firefighter problem. Theoret Comput Sci, 2011, 412: 913- 921

DOI

74
Watts D J , Strogatz S . Collective dynamics of small-world networks. Nature, 1998, 393 (6684): 440- 442

DOI

75
Wu T T . The surviving rate of planar graphs. Master’s thesis, Zhejiang Normal Univeraity, 2015

76
Wu T T , Kong J X , Wang W F . The 2-surviving rate of planar graphs without 5-cycles. J Comb Optim, 2016, 31: 1479- 1492

DOI

77
Yue X B , Wang W F . The surviving rate of Halin graphs. J Zhejiang Norm Univ Natur Sci, 2011, 34: 141- 144 (in Chinese)

78
Zambon M , Rezende P , Souza C . Finding exact solutions for the Geometric Firefighter Problem in practics. Comput Oper Res, 2018, 97: 72- 83

DOI

79
Zambon M , Rezende P , Souza C . Solving the geometric firefighter routing problem via integer programming. European J Oper Res, 2018, 274: 1090- 1101

80
Zanette D , Kuperman M . Effects of immunization in small-world epidemics. Physica A, 2002, 309 (3–4): 445- 452

Outlines

/