Frontiers of Mathematics in China >
Upper bounds for eigenvalues of Cauchy-Hankel tensors
Received date: 09 Oct 2020
Accepted date: 04 Dec 2020
Copyright
We present upper bounds of eigenvalues for finite and infinite dimensional Cauchy-Hankel tensors. It is proved that an m-order infinite dimensional Cauchy-Hankel tensor defines a bounded and positively (m-1)-homogeneous operator from l1 into lp (1<p<∞); and two upper bounds of corresponding positively homogeneous operator norms are given. Moreover, for a fourth-order real partially symmetric Cauchy-Hankel tensor, suffcient and necessary conditions of M-positive definiteness are obtained, and an upper bound of M-eigenvalue is also shown.
Key words: Cauchy-Hankel tensor; eigenvalues; upper bound; M-positive definite
Wei MEI , Qingzhi YANG . Upper bounds for eigenvalues of Cauchy-Hankel tensors[J]. Frontiers of Mathematics in China, 2021 , 16(4) : 1023 -1041 . DOI: 10.1007/s11464-021-0890-0
1 |
Chang K C, Zhang T. On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors. J Math Anal App, 2013, 408: 525–540
|
2 |
Che H, Chen H, Wang Y. M-positive semi-definiteness and M-positive definiteness of fourth-order partially symmetric Cauchy tensors. J Inequal Appl, 2019, 2019: 32
|
3 |
Che H, Chen H, Wang Y. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. J Ind Manag Optim, 2020, 16(1): 309–324
|
4 |
Chen H, Li G, Qi L. Further results on Cauchy tensors and Hankel tensors. Appl Math Comput, 2016, 275: 50–62
|
5 |
Chen H, Qi L. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. J Ind Manag Optim, 2015, 11(4): 1263–1274
|
6 |
Culp J, Pearson K, Zhang T. On the uniqueness of the Z1-eigenvector of transition probability tensors. Linear Multilinear Algebra, 2017, 65: 891–896
|
7 |
Frazer H. Note on Hilbert's inequality. J Lond Math Soc, 1946, 21: 7–9
|
8 |
Güngör A D. Lower bounds for the norms of Cauchy-Toeplitz and Cauchy-Hankel matrices. Appl Math Comput, 2004, 157(3): 599–604
|
9 |
Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge Univ Press, 1952
|
10 |
He J, Xu G, Liu Y. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. J Ind Manag Optim, 2020, 16(6): 3035–3045
|
11 |
Kuang J, Debnath L. On new generalizations of Hilbert's inequality and their applications. J Math Anal Appl, 2000, 245: 248–265
|
12 |
Li S, Li Y. Checkable criteria for the M-positive definiteness of fourth-order partially symmetric tensors. Bull Iranian Math Soc, 2020, 46: 1455–1463
|
13 |
Lim L H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Tensor Adaptive Processing, Vol 1, 2005. 2005, 129–132
|
14 |
Mei W, Song Y. Infinite and finite dimensional generalized Hilbert tensors. Linear Algebra Appl, 2017, 532: 8–24
|
15 |
Meng J, Song Y. Upper bounds for Z1-eigenvalues of generalized Hilbert tensors. J Ind Manag Optim, 2020, 16(2): 911–918
|
16 |
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
|
17 |
Qi L. Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines. J Symbolic Comput, 2006, 41: 1309–1327
|
18 |
Qi L, Dai H, Han D. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4: 349–364
|
19 |
Solak S, Bozkurt D. Some bounds on lp matrix and lp operator norms of almost circulant, Cauchy-Toeplitz and Cauchy-Hankel matrices. Math Comput Appl, 2002, 7(3): 211–218
|
20 |
Solak S, Bozkurt D. On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices. Appl Math Comput, 2003, 140(2): 231–238
|
21 |
Song Y, Mei W. Structural properties of tensors and complementarity problems. J Optim Theory Appl, 2018, 176: 289–305
|
22 |
Song Y, Qi L. Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl, 2014, 451: 1–14
|
23 |
Türkmen R, Bozkurt D. On the bounds for the norms of Cauchy-Toeplitz and Cauchy- Hankel matrices. Appl Math Comput, 2002, 132: 633–642
|
24 |
Wang G, Sun L, Liu L. M-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors. Complexity, 2020, (3): 1–8
|
25 |
Zhang Y, Sun L, Wang G. Sharp bounds on the minimum M-eigenvalue of elasticity M-tensors. Mathematics, 2020, 8(2): 250
|
/
〈 | 〉 |