RESEARCH ARTICLE

Hoeffding's inequality for Markov processes via solution of Poisson's equation

  • Yuanyuan LIU ,
  • Jinpeng LIU
Expand
  • School of Mathematics and Statistics, New Campus, Central South University, Changsha 410083, China

Received date: 30 Jul 2020

Accepted date: 29 Dec 2020

Published date: 15 Apr 2021

Copyright

2021 Higher Education Press

Abstract

We investigate Hoeffding's inequality for both discrete-time Markov chains and continuous-time Markov processes on a general state space. Our results relax the usual aperiodicity restriction in the literature, and the explicit upper bounds in the inequalities are obtained via the solution of Poisson's equation. The results are further illustrated with applications to queueing theory and reective diffusion processes.

Cite this article

Yuanyuan LIU , Jinpeng LIU . Hoeffding's inequality for Markov processes via solution of Poisson's equation[J]. Frontiers of Mathematics in China, 2021 , 16(2) : 543 -558 . DOI: 10.1007/s11464-021-0898-5

1
Anderson WJ. Continuous-Time Markov Chains: An Applications-Oriented Approach. New York: Springer-Verlag, 1991

DOI

2
Asmussen S, Bladt M. Poisson's equation for queues driven by a Markovian marked point process. Queueing Syst, 1994, 17: 235–274

DOI

3
Boucher T R. A Hoeffding inequality for Markov chains using a generalized inverse. Statist Probab Lett, 2009, 79: 1105–1107

DOI

4
Chen M F. Single birth processes. Chin Ann Math Ser B, 1999, 20(1): 77–82

DOI

5
Chen M F, Zhang Y H. Unified representation of formulas for single birth processes. Front Math China, 2014, 9(4): 761–796

DOI

6
Chen R R. An extended class of time-continuous branching processes. J Appl Probab, 1997, 34: 14–23

DOI

7
Choi M C H, Li E. A Hoeffding's inequality for uniformly ergodic diffusion process. Statist Probab Lett, 2019, 150: 23–28

DOI

8
Devroye L, Györfi L, Lugosi G. A Probabilistic Theory of Pattern Recognition.New York: Springer-Verlag, 1996

DOI

9
Glynn P W, Meyn S P. A Liapounov bound for solutions of the Poisson equation. Ann Probab, 1996, 24: 916–931

DOI

10
Glynn P W, Ormoneit P. Hoeffding's inequality for uniformly ergodic Markov chains. Statist Probab Lett, 2002, 56: 143–146

DOI

11
Hoeffding W. Probability inequalities for sums of bounded random variables. J Amer Statist Assoc, 1963, 58: 13–30

DOI

12
Jiang S X, Liu Y Y, Yao S. Poisson's equation for discrete-time single-birth processes. Statist Probab Lett, 2014, 85: 78–83

DOI

13
Karlin S, Taylor H M. A Second Course in Stochastic Processes.Boston: Academic Press, 1981

14
Lezaud P.Chernoff-type bound for finite Markov chains. Ann Appl Probab, 1998, 8(3): 849–867

DOI

15
Liu Y Y. Perturbation bounds for the stationary distributions of Markov chains. SIAM J Matrix Anal Appl, 2012, 33(4): 1057–1074

DOI

16
Liu Y Y, Li W D. Error bounds for augmented truncation approximations of Markov chains via the perturbation method. Adv in Appl Probab, 2018, 50(2): 645–669

DOI

17
Liu Y Y, Li Y. V-uniform ergodicity for fluid queues. Appl Math J Chinese Univ Ser B, 2019, 34(1): 82–91

DOI

18
Liu Y Y, Zhang H J, Zhao Y Q. Computable strongly ergodic rates of convergence for continuous-time Markov chains. ANZIAM J, 2008, 49(4): 463–478

DOI

19
Masuyama H.Error bounds for last-column-block-augmented truncations of blockstructured Markov chains. J Oper Res Soc Japan, 2017, 60: 271–320

DOI

20
Miasojedow B. Hoeffdings inequalities for geometrically ergodic Markov chains on general state space. Statist Probab Lett, 2014, 87: 115–120

DOI

21
Rogers L C G. Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains. Ann Appl Probab, 1994, 4(2): 390–413

DOI

22
Seneta E. Coefficients of ergodicity: structure and applications. J Appl Probab, 1979, 11(3): 576–590

DOI

23
Sharpe M. General Theory of Markov Processes.New York: Academic, 1988

Outlines

/