RESEARCH ARTICLE

Fourier transform of anisotropic mixed-norm Hardy spaces

  • Long HUANG 1 ,
  • Der-Chen CHANG 2,3 ,
  • Dachun YANG , 1
Expand
  • 1. Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
  • 2. Department of Mathematics and Statistics, Georgetown University, Washington, DC 20057, USA
  • 3. Graduate Institute of Business Adminstration, College of Management, Fu Jen Catholic University, New Teipei City 242, China

Received date: 11 Jan 2021

Accepted date: 02 Feb 2021

Published date: 15 Feb 2021

Copyright

2021 Higher Education Press

Abstract

Let a=(a1,...,an)[1,)n,p:=(p1,...pn)(0,1]n,Hap(n) be the anisotropic mixed-norm Hardy space associated with a defined via the radial maximal function, and let f belong to the Hardy space Hap(n). In this article, we show that the Fourier transform f^ coincides with a continuous function g on n in the sense of tempered distributions and, moreover, this continuous function g; multiplied by a step function associated with a; can be pointwisely controlled by a constant multiple of the Hardy space norm of f: These proofs are achieved via the known atomic characterization of Hap(n) and the establishment of two uniform estimates on anisotropic mixed-norm atoms. As applications, we also conclude a higher order convergence of the continuous function g at the origin. Finally, a variant of the Hardy{Littlewood inequality in the anisotropic mixed-norm Hardy space setting is also obtained. All these results are a natural generalization of the well-known corresponding conclusions of the classical Hardy spaces Hp(n) with p(0,1], and are even new for isotropic mixed-norm Hardy spaces on n.

Cite this article

Long HUANG , Der-Chen CHANG , Dachun YANG . Fourier transform of anisotropic mixed-norm Hardy spaces[J]. Frontiers of Mathematics in China, 2021 , 16(1) : 119 -139 . DOI: 10.1007/s11464-021-0906-9

1
Benedek A, Panzone R. The space Lp; with mixed norm. Duke Math J, 1961, 28: 301–324

DOI

2
Besov O V, Il'in V P,Lizorkin P I. The Lp-estimates of a certain class of nonisotropically singular integrals. Dokl Akad Nauk SSSR, 1966, 169: 1250–1253(in Russian)

3
Besov O V, Il'in V P, Nikol'skiĭ S M. Integral Representations of Functions and Imbedding Theorems. Vol I.New York: Halsted Press (John Wiley and Sons), 1978

4
Bownik M. Anisotropic Hardy Spaces and Wavelets. Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc, 2003

DOI

5
Bownik M, Wang L-A D. Fourier transform of anisotropic Hardy spaces. Proc Amer Math Soc, 2013, 141: 2299–2308

DOI

6
Bu R, Fu Z, Zhang Y.Weighted estimates for bilinear square functions with non-smooth kernels and commutators. Front Math China, 2020, 15: 1–20

DOI

7
Chen T, Sun W. Hardy-Littlewood-Sobolev inequality on mixed-norm Lebesgue spaces. arXiv: 1912.03712

8
Chen T, Sun W. Iterated and mixed weak norms with applications to geometric inequalities. J Geom Anal, 2020, 30: 4268–4323

DOI

9
Chen T, Sun W. Extension of multilinear fractional integral operators to linear operators on mixed-norm Lebesgue spaces. Math Ann, 2020, doi.org/10.1007/s00208-020-02105-2

DOI

10
Cleanthous G, Georgiadis A G. Mixed-norm α-modulation spaces. Trans Amer Math Soc, 2020, 373: 3323–3356

DOI

11
Cleanthous G, Georgiadis A G, Nielsen M. Anisotropic mixed-norm Hardy spaces. J Geom Anal, 2017, 27: 2758–2787

DOI

12
Cleanthous G, Georgiadis A G, Nielsen M. Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl Comput Harmon Anal, 2019, 47: 447–480

DOI

13
Coifman R R. Characterization of Fourier transforms of Hardy spaces. Proc Natl Acad Sci USA, 1974, 71: 4133–4134

DOI

14
Colzani L. Fourier transform of distributions in Hardy spaces. Boll Unione Mat Ital A (6), 1982, 1: 403–410

15
Deng Q, Guedjiba D E.Weighted product Hardy space associated with operators. Front Math China, 2020, 15: 649–683

DOI

16
Fabes E B, Rivière N M. Singular integrals with mixed homogeneity. Studia Math, 1966, 27: 19–38

DOI

17
Fefferman C, Stein E M.Hp spaces of several variables. Acta Math, 1972, 129: 137–193

DOI

18
García-Cuerva J, Kolyada V I. Rearrangement estimates for Fourier transforms in Lp and Hp in terms of moduli of continuity. Math Nachr, 2001, 228: 123–144

DOI

19
Georgiadis A G, Johnsen J, Nielsen M. Wavelet transforms for homogeneous mixednorm Triebel–Lizorkin spaces. Monatsh Math, 2017, 183: 587–624

DOI

20
Hart J, Torres R H, Wu X. Smoothing properties of bilinear operators and Leibniztype rules in Lebesgue and mixed Lebesgue spaces. Trans Amer Math Soc, 2018, 370: 8581–8612

DOI

21
Hörmander L. Estimates for translation invariant operators in Lp spaces. Acta Math, 1960, 104: 93–140

DOI

22
Huang L, Liu J, Yang D, Yuan W. Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J Geom Anal, 2019, 29: 1991–2067

DOI

23
Huang L, Liu J,Yang D, Yuan W. Dual spaces of anisotropic mixed-norm Hardy spaces. Proc Amer Math Soc, 2019, 147: 1201–1215

DOI

24
Huang L, Liu J, Yang D, Yuan W. Identification of anisotropic mixed-norm Hardy spaces and certain homogeneous Triebel-Lizorkin spaces. J Approx Theory, 2020, 258: 1–27

DOI

25
Huang L, Liu J, Yang D, Yuan W. Real-variable characterizations of new anisotropic mixed-norm Hardy spaces. Comm Pure Appl Anal, 2020, 19: 3033–3082

DOI

26
Huang L, Weisz F, Yang D, Yuan W. Summability of Fourier transforms on mixednorm Lebesgue spaces via associated Herz spaces. Preprint

27
Huang L, Yang D. On function spaces with mixed norms-a survey. J Math Study, 2019, doi.org/10.4208/jms.v54n3.21.03

28
Huang L, Yang D, Yuan W, Zhang Y. New ball Campanato-type function spaces and their applications. Preprint

29
Jawerth B. Some observations on Besov and Lizorkin–Triebel spaces. Math Scand, 1977, 40: 94–104

DOI

30
Johnsen J, Munch Hansen S, Sickel W. Characterisation by local means of anisotropic Lizorkin–Triebel spaces with mixed norms. Z Anal Anwend, 2013, 32: 257–277

DOI

31
Johnsen J, Munch Hansen S, Sickel W. Anisotropic Lizorkin{Triebel spaces with mixed norms-traces on smooth boundaries. Math Nachr, 2015, 288: 1327–1359

DOI

32
Johnsen J, Sickel W. A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin–Triebel spaces with mixed norms. J Funct Spaces Appl, 2007, 5: 183–198

DOI

33
Johnsen J, Sickel W. On the trace problem for Lizorkin–Triebel spaces with mixed norms. Math Nachr, 2008, 281: 669–696

DOI

34
Lizorkin P I. Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. Applications. Izv Akad Nauk SSSR Ser Mat, 1970, 34: 218–247

35
Peetre J. New Thoughts on Besov Spaces. Duke Univ Math Ser, No 1. Durham: Math Department, Duke Univ, 1976

36
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton: Princeton Univ Press, 1993

DOI

37
Stein E M, Wainger S. Problems in harmonic analysis related to curvature. Bull Amer Math Soc, 1978, 84: 1239–1295

DOI

38
Taibleson M H, Weiss G. The molecular characterization of certain Hardy spaces. Astérisque, 1980, 77: 67–149

39
Wang H, Xu J, Tan J. Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents. Front Math China, 2020, 15: 1011–1034

DOI

40
Yan X, Yang D, Yuan W. Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces. Front Math China, 2020, 15: 769{806

DOI

41
Zhang X, Wei M, Yan D, He Q. Equivalence of operator norm for Hardy{Littlewood maximal operators and their truncated operators on Morrey spaces. Front Math China, 2020, 15: 215–223

DOI

Outlines

/