Frontiers of Mathematics in China >
Function characterizations via commutators of Hardy operator
Received date: 22 Nov 2020
Accepted date: 31 Dec 2020
Published date: 15 Feb 2021
Copyright
This paper is a summary of the research on the characterizations of central function spaces by the author and his collaborators in the past ten years. More precisely, the author gives some characterizations of central Campanato spaces via the boundedness and compactness of commutators of Hardy operator.
Key words: Hardy operator; commutator; central function space
Shanzhen LU . Function characterizations via commutators of Hardy operator[J]. Frontiers of Mathematics in China, 2021 , 16(1) : 1 -12 . DOI: 10.1007/s11464-021-0894-9
1 |
Adams D R, Xiao J. Morrey spaces in harmonic analysis. Ark Mat, 2012, 50: 201–230
|
2 |
Adams D R, Xiao J. Regularity of Morrey commutators. Trans Amer Math Soc, 2012, 364: 4801–4818
|
3 |
Alvarez J, Guzmán-Partida M, Lakey J. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect Math, 2000, 51: 1–47
|
4 |
Anderson K, Muckenhoupt B. Weighted weak type Hardy inequalities with application to Hilbert transforms and maximal functions. Studia Math, 1982, 72: 9–26
|
5 |
Beatrous F, Li S Y, On the boundedness and compactness of operators of Hankel type. J Funct Anal, 1993, 111: 350–379
|
6 |
Branmanti M, Cerutti M.Wp1,2-solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients. Comm Partial Differential Equations. 1993, 18: 1735–1763
|
7 |
Campanato S. Proprietàdi Hölderianità di alcune classi di funzioni. Ann Sc Norm Super Pisa, 1963, 17: 173–188
|
8 |
Chanillo S. A note on commutators. Indiana Univ Math J, 1982, 31: 7–16
|
9 |
Chen Y P, Ding Y. Compactness of the commutators of parabolic singular integrals. Sci China Math, 2010, 53: 2633–2648
|
10 |
Chen Y P, Ding Y. Compactness of commutators of Riesz potential on Morrey spaces. Potential Anal, 2009, 30: 301–313
|
11 |
Chen Y P, Ding Y. Compactness of commutators for singular integrals on Morrey spaces. Canad J Math, 2012, 64: 257–281
|
12 |
Chiarenza F, Frasca M, Longo P. W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans Amer Math Soc, 1993, 336: 841–853
|
13 |
Christ M, Grafakos L. Best constants for two nonconvolution inequalities. Proc Amer Math Soc, 1995, 123: 1687–1693
|
14 |
Coifman R R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103: 611–635
|
15 |
Cruz D, Neugebauer C J. The structure of the reverse Hölder classes. Trans Amer Math Soc, 1995, 345: 2941–2960
|
16 |
Deng D G, Duong X T, Yan L X. A characterization of Morrey-Campanato spaces. Math Z, 2005, 250: 641–655
|
17 |
Ding Y. A characterization of BMO via commutators for some operators. Northeast Math, 1997, 13: 422–432
|
18 |
Ding Y, Mei T. Boundedness and compactness for the commutators of bilinear operators on Morrey spaces. Potential Anal, 2015, 42: 717–748
|
19 |
Duong X T, Xiao J, Yan L X. Old and new Morrey spaces with heat kernel bounds. J Fourier Anal Appl, 2007, 13: 87–111
|
20 |
Fan D S, Lu S Z, Yang D C. Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with V MO coefficients. Georgian Math J, 1998, 5: 425–440
|
21 |
Faris W. Weak Lebesgue spaces and quantum mechanical binding. Duke Math J, 1976, 43: 365–373
|
22 |
Fazio G D, Ragusa M A. Interior estimates in Morrey spaces for strongly solutions to nondivergence form equations with discontinuous coefficients. J Funct Anal, 1993, 112: 241–256
|
23 |
Fefferman C. The uncertainty principle. Bull Amer Math Soc, 1983, 9: 129–206
|
24 |
Fu Z W, Liu Z G, Lu S Z, Wang H B. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A, 2007, 50: 1418–1426
|
25 |
Fu Z W, Lu S Z. Commutators of generalized Hardy operators. Math Nachr, 2009, 282: 832–845
|
26 |
Fu Z W, Wu Q Y, Lu S Z. Sharp estimates of p-adic Hardy and Hardy-Littlewood-Pólya operators. Acta Math Sin (Engl Ser), 2013, 29: 137–150
|
27 |
García-Cuerva J. Hardy spaces and Beurling algebras. J Lond Math Soc, 1989, 39: 499–513
|
28 |
Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. Grundlehren Math Wiss, Vol 224. Berlin: Springer-Verlag, 1983,
|
29 |
Golubov B. Boundedness of the Hardy and the Hardy-Littlewood operators in the spaces Re H1 and BMO. Mat Sb, 1997, 188: 93–106
|
30 |
Hardy G H, Littlewood J E, Pólya G. Inequalities. London: Cambridge Univ Press, 1934
|
31 |
Harboure E, Salinas O, Viviani B. Reverse Hölder classes in the Orlicz-spaces setting. Studia Math, 1998, 130: 245–261
|
32 |
Iwaniec T, Sbordone C. Riesz transforms and elliptic PDEs with VMO coefficients. J Anal Math, 1998, 74: 183–212
|
33 |
Janson S. Mean oscillation and commutators of singular integral operators. Ark Mat, 1978, 16: 263–270
|
34 |
Komori Y. Notes on commutators of Hardy operators. Int J Pure Appl Math, 2003, 7: 329–334
|
35 |
Krantz S, Li S Y. Boundedness and compactness of integral operators on spaces of homogeneous type and applications II. J Math Anal Appl, 2001, 258: 642–657
|
36 |
Lemarié-Rieusset P. The Navier-Stokes equations in the critical Morrey-Campanato space. Rev Mat Iberoam, 2007, 23: 897–930
|
37 |
Lu G Z. Embedding theorems on Campanato-Morrey spaces for degenerate vector fields and applications. C R Acad Sci Paris Sér I Math, 1995, 320: 429–434
|
38 |
Lu S Z, Yang D C. The central BMO spaces and Littlewood-Paley operators. Approx Theory Appl, 1995, 11: 72–94
|
39 |
Lu S Z, Yan D Y, Zhao F Y. Sharp bounds for Hardy type operators on higherdimensional product spaces. J Inequal Appl, 2013, 148: 1–11
|
40 |
Long S C, Wang J. Commutators of Hardy operators. J Math Anal Appl, 2002, 274: 626–644
|
41 |
Morrey C. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43: 126–166
|
42 |
Palagachev D, Softova L. Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s. Potential Anal, 2004, 20: 237–263
|
43 |
Paluszynski M. Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ Math J, 1995, 44: 1–17
|
44 |
Sawyer E. Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator. Trans Amer Math Soc, 1984, 1: 329–337
|
45 |
Shi S G, Fu Z W, Lu S Z. On the compactness of commutators of Hardy operators. Pacific J Math, 2020, 307: 239–256
|
46 |
Shi S G, Lu S Z. Some characterizations of Campanato spaces via commutators on Morrey spaces. Pacific J Math, 2013, 264: 221–234
|
47 |
Shi S G, Lu S Z. A characterization of Campanato space via commutator of fractional integral. J Math Anal Appl, 2014, 419: 123–137
|
48 |
Shi S G, Lu S Z. Characterization of the central Campanato space via the commutator operator of Hardy type. J Math Anal Appl, 2015, 429: 713–732
|
49 |
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Monographs in Harmonic Analysis, III. Princeton Math Ser, 43. Princeton: Princeton Univ Press, 1993
|
50 |
Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Monographs in Harmonic Analysis, I. Princeton Math Ser, 32. Princeton: Princeton Univ Press, 1971
|
51 |
Uchiyama A. On the compactness of operators of Hankel type. Tohoku Math J, 1978, 30: 163–171
|
52 |
Wang S M, Lu S Z, Yan D Y, Explicit constants for Hardy’s inequality with power weight on n-dimensional product spaces. Sci China Math, 2012, 55(12): 2469–2480
|
53 |
Wu Q Y, Fu Z W. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc, 2017, 40: 635–654
|
54 |
Wu Q Y, Mi L, Fu Z W. Boundedness of p-adic Hardy operators and their commutators on p-adic central Morrey and BMO spaces. J Funct Spaces, 2013, 2013: 1–10
|
55 |
Yang D C, Yang D Y, Zhou Y. Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrödinger operators. Nagoya Math J, 2010, 198: 77–119
|
56 |
Yuan W, Sickel W, Yang D C. Morrey and Campanato meet Besov, Lizorkin and Triebel. Lecture Notes in Math, Vol 2005. Berlin: Springer-Verlag, 2010
|
57 |
Zhao F Y, Lu S Z. A characterization of λ-central BMO space. Front Math China, 2013, 8: 229–238
|
/
〈 |
|
〉 |