RESEARCH ARTICLE

Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents

  • Hongbin WANG , 1,2 ,
  • Jingshi XU 3 ,
  • Jian TAN 4
Expand
  • 1. School of Mathematical Sciences, Anhui University, Hefei 230601, China
  • 2. School of Mathematics and Statistics, Shandong University of Technology, Zibo 255000, China
  • 3. School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China
  • 4. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Received date: 23 Jun 2020

Accepted date: 24 Sep 2020

Published date: 15 Oct 2020

Copyright

2020 Higher Education Press

Abstract

We prove the boundedness for a class of multi-sublinear singular integral operators on the product of central Morrey spaces with variable exponents. Based on this result, we obtain the boundedness for the multilinear singular integral operators and two kinds of multilinear singular integral commutators on the above spaces.

Cite this article

Hongbin WANG , Jingshi XU , Jian TAN . Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents[J]. Frontiers of Mathematics in China, 2020 , 15(5) : 1011 -1034 . DOI: 10.1007/s11464-020-0864-7

1
Alvarez J, Lakey J, Guzmán-Partida M. Spaces of bounded-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect Math, 2000, 51: 1–47

2
Chen Y, Levin S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66: 1383–1406

DOI

3
Chuong N, Duong D, Hung H. Bounds for the weighted Hardy-Cesaro operator and its commutator on Morrey-Herz type spaces. Z Anal Anwend, 2016, 35: 489–504

DOI

4
Cruz-Uribe D, Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Appl Numer Harmon Anal. Heidelberg: Springer, 2013

DOI

5
Cruz-Uribe D, Fiorenza A, Martell J M, Pérez C. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31: 239–264

6
Cruz-Uribe D, Fiorenza A, Neugebauer C. The maximal function on variable Lp spaces. Ann Acad Sci Fenn Math, 2003, 28: 223–238

7
Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Vol 2017. Heidelberg: Springer, 2011

DOI

8
Diening L, Růžička M. Calderón-Zygmund operators on generalized Lebesgue spaces L(·) and problems related to uid dynamics. J Reine Angew Math, 2003, 563: 197–220

DOI

9
Fu Z, Lin Y, Lu S. λ-central BMO estimates for commutators of singular integral operators with rough kernels. Acta Math Sin (Engl Ser), 2008, 24: 373–386

DOI

10
Fu Z, Lu S, Wang H, Wang L. Singular integral operators with rough kernels on central Morrey spaces with variable exponent. Ann Acad Sci Fenn Math, 2019, 44: 505–522

DOI

11
Grafakos L, Kalton N. Multilinear Calderón-Zygmund operators on Hardy spaces. Collect Math, 2001, 52: 169–179

12
Grafakos L, Torres R. Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165: 124–164

DOI

13
Grafakos L, Torres R. Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ Math J, 2002, 51: 1261–1276

DOI

14
Harjulehto P, Hästö P, Lê U V, Nuortio M. Overview of differential equations with non-standard growth. Nonlinear Anal, 2010, 72: 4551–4574

DOI

15
Huang A, Xu J. Multilinear singular integrals and commutators in variable exponent Lebesgue spaces. Appl Math J Chinese Univ Ser B, 2010, 25: 69–77

DOI

16
Hussain A, Gao G. Multilinear singular integrals and commutators on Herz space with variable exponent. ISRN Math Anal, 2014, 2014: Article ID 626327 (10pp)

DOI

17
Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36: 33–50

DOI

18
Kováčik O, Rákosník J. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41: 592–618

DOI

19
Lacey M, Thiele C. Lp estimates on the bilinear Hilbert transform for 2<p<∞ Ann of Math, 1997, 146: 693–724

DOI

20
Lacey M, Thiele C. On Calderón's conjecture. Ann of Math, 1999, 149: 475–496

DOI

21
Mizuta Y, Ohno T, Shimomura T. Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent. Hokkaido Math J, 2015, 44: 185–201

DOI

22
Pérez C, Trujillo-González R. Sharp weighted estimates for multilinear commutators. J Lond Math Soc, 2002, 65: 672–692

DOI

23
Růžička M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer, 2000

24
Sawano Y, Shimomura T. Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces. Z Anal Anwend, 2017, 36: 159–190

DOI

25
Shi S, Lu S. Characterization of the central Campanato space via the commutator operator of Hardy type. J Math Anal Appl, 2015, 429: 713–732

DOI

26
Tan J, Liu Z, Zhao J. On multilinear commutators in variable Lebesgue spaces. J Math Inequal, 2017, 11: 715–734

DOI

27
Tang C, Wu Q, Xu J. Commutators of multilinear Calderón-Zygmund operator and BMO functions in Herz-Morrey spaces with variable exponents. J Funct Spaces, 2014, 2014: Article ID 162518 (12pp)

DOI

28
Tao X, Shi Y. Multilinear commutators of Calderón-Zygmund operator on λ-central Morrey spaces. Adv Math (China), 2011, 40: 47–59

29
Wang D, Liu Z, Zhou J, Teng Z. Central BMO spaces with variable exponent. Acta Math Sinica (Chin Ser), 2018, 61: 641–650 (in Chinese)

30
Wang H. The continuity of commutators on Herz-type Hardy spaces with variable exponent. Kyoto J Math, 2016, 56: 559–573

DOI

31
Wang H. Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent. J Korean Math Soc, 2017, 54: 713–732

DOI

32
Wang H. Commutators of homogeneous fractional integrals on Herz-type Hardy spaces with variable exponent. J Contemp Math Anal, 2017, 52: 134–143

DOI

33
Wang H, Liao F. Boundedness of singular integral operators on Herz-Morrey spaces with variable exponent. Chin Ann Math Ser B, 2020, 41: 99–116

DOI

34
Wang H, Yan D. Commutators of Marcinkiewicz integrals with rough kernels on Herztype Hardy spaces with variable exponent. J Math Inequal, 2018, 12: 1173–1188

DOI

35
Wang L, Shu L. Multilinear commutators of singular integral operators in variable exponent Herz-type spaces. Bull Malays Math Sci Soc, 2019, 42: 1413{1432

DOI

36
Xu J. The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent. Czechoslovak Math J, 2007, 57: 13–27

DOI

Outlines

/