RESEARCH ARTICLE

Dynamics of a family of rational maps concerning renormalization transformation

  • Yuhan ZHANG 1 ,
  • Junyang GAO , 1 ,
  • Jianyong QIAO 2 ,
  • Qinghua WANG 1
Expand
  • 1. School of Science, China University of Mining and Technology, Beijing 100083, China
  • 2. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received date: 03 Mar 2020

Accepted date: 21 Jul 2020

Published date: 15 Aug 2020

Copyright

2020 Higher Education Press

Abstract

Considering a family of rational maps Tnλconcerning renormalization transformation, we give a perfect description about the dynamical properties of Tnλ and the topological properties of the Fatou components F (Tnλ). Furthermore, we discuss the continuity of the Hausdorff dimension HD(J (Tnλ)) about real parameter λ.

Cite this article

Yuhan ZHANG , Junyang GAO , Jianyong QIAO , Qinghua WANG . Dynamics of a family of rational maps concerning renormalization transformation[J]. Frontiers of Mathematics in China, 2020 , 15(4) : 807 -833 . DOI: 10.1007/s11464-020-0854-9

1
Beardon A F. Iteration of Rational Functions. New York: Springer-Verlag, 1991

DOI

2
Bleher P M, Lyubich M Y. Julia sets and complex singularities in hierarchical Ising models. Comm Math Phys, 1991, 141(3): 453–474

DOI

3
Carleson L, Gamelin T W. Complex Dynamics. New York: Springer-Verlag, 1993

DOI

4
Carleson L, Jones P W, Yoccoz J C. Julia and John. Bull Braz Math Soc, 1994, 25(1): 1–30

DOI

5
Collet P, Eckmann J-P. Iterated Map on the Interval as Dynamical Systems. Boston: Birkhäuser, 2009

DOI

6
Denker M, Urbanski M. Hausdorff measures on Julia sets of subexpanding rational maps. Israel J Math, 1991, 76(1-2): 193–214

DOI

7
Derrida B, De Seze L, Itzykson C. Fractal structure of zeros in hierarchical models. J Stat Phys, 1983, 33(3): 559–569

DOI

8
Derrida B, Itzykson C, Luck J M. Oscillatory critical amplitudes in hierarchical models. Comm Math Phys, 1984, 94(1): 115–132

DOI

9
Fisher M E. The nature of critical points. In: Brittin W E. Lectures in Theoretical Physics, Vol VII C: Statistical Physics, Weak Interactions, Field Theory. New York: Gordon Breach, 1965, 1–159

10
Gao J. On quasi-discs and Fatou components of a family of rational maps concerning renormalization transformation. Chaos Solitons Fractals, 2018, 114: 31–37

DOI

11
Gao J, Qiao J, Zhai Y. Misiurewicz points on the Mandelbrot-like set concerning renormalization transformation. Sci China Math, 2014, 57(12): 2539–2548

DOI

12
Lee T D, Yang C N. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys Rev, 1952, 87(3): 410–419

DOI

13
McMullen C T. Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps. Comment Math Helv, 2000, 75(4): 535–593

DOI

14
Milnor J. Dynamics in One Complex Variable. 3rd ed. Ann of Math Stud, Vol 160. Princeton: Princeton Univ Press, 2006

15
Monroe J L. Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems. J Phys A, 2001, 34(33): 6405–6412

DOI

16
Pommerenke C. Boundary Behaviour of Conformal Maps. Grundlehren Math Wiss, Vol 299. Berlin: Springer, 1992

DOI

17
Qiao J. On the preimages of parabolic periodic points. Nonlinearity, 2000, 13(3): 813–818

DOI

18
Qiao J. Julia sets and complex singularities in diamond-like hierarchical Potts models. Sci China Ser A: Math, 2005, 48(3): 388–412

DOI

19
Qiao J, Li Y. On connectivity of Julia sets of Yang-Lee zeros. Comm Math Phys, 2001, 222(2): 319–326

DOI

20
Qiao J, Yin Y, Gao J. Feigenbaum Julia sets of singularities of free energy. Ergodic Theory Dynam Systems, 2010, 30(5): 1573–1591

DOI

21
Qiu W, Wang X, Yin Y. Dynamics of McMullen maps. Adv Math, 2012, 229(4): 2525–2577

DOI

22
Qiao J. Julia Sets and Complex Singularities of Free Energies. Mem Amer Math Soc, Vol 234, No 1102. Providence: Amer Math Soc, 2015

DOI

23
Rivera-Letelier J. On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets. Fund Math, 2001, 170(3): 287–317

DOI

24
Ruelle D. Repellers for real analytic maps. Ergodic Theory Dynam Systems, 1982, 2(1): 99–107

DOI

25
Sullivan D. Conformal Dynamical Systems. Berlin: Springer, 1983

26
Wang X, Qiu W, Yin Y, Qiao J, Gao J. Connectivity of the Mandelbrot set for the family of renormalization transformations. Sci China Math, 2010, 53(3): 849–862

DOI

27
Wilson K G. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys Rev B, 1971, 4(9): 3174–3183

DOI

28
Yang C N, Lee T D. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys Rev, 1952, 87(3): 404–409

DOI

29
Yang F, Zeng J. On the dynamics of a family of generated renormalization transformations. J Math Anal Appl, 2014, 413(1): 361–377

DOI

Outlines

/