RESEARCH ARTICLE

Weighted weak group inverse for Hilbert space operators

  • Dijana MOSIC 1 ,
  • Daochang ZHANG , 2
Expand
  • 1. Faculty of Sciences and Mathematics, University of Ni_s; P. O. Box 224, 18000 Ni_s; Serbia
  • 2. College of Sciences, Northeast Electric Power University, Jilin 132012, China

Received date: 10 Apr 2020

Accepted date: 13 Jun 2020

Published date: 15 Aug 2020

Copyright

2020 Higher Education Press

Abstract

We present the weighted weak group inverse, which is a new generalized inverse of operators between two Hilbert spaces, and we extend the notation of the weighted weak group inverse for rectangular matrices. Some characterizations and representations of the weighted weak group inverse are investigated. We also apply these results to define and study the weak group inverse for a Hilbert space operator. Using the weak group inverse, we define and characterize various binary relations.

Cite this article

Dijana MOSIC , Daochang ZHANG . Weighted weak group inverse for Hilbert space operators[J]. Frontiers of Mathematics in China, 2020 , 15(4) : 709 -726 . DOI: 10.1007/s11464-020-0847-8

1
Baksalary O M, Trenkler G. Core inverse of matrices. Linear Multilinear Algebra, 2010, 58(6): 681–697

DOI

2
Campbell S L. Generalized Inverses of Linear Transformations. London: Pitman, 1979

3
Campbell S L. Singular Systems of Differential Equations II. Research Notes in Math, Vol 61. San Francisco: Pitman, 1982

4
Dajić A, Koliha J J.The weighted g-Drazin inverse for operators. J Aust Math Soc, 2007, 82: 163–181

DOI

5
Ferreyra D E, Levis F E, Thome N. Maximal classes of matrices determining generalized inverses. Appl Math Comput, 2018, 333: 42–52

DOI

6
Ferreyra D E, Levis F E, Thome N. Revisiting the core EP inverse and its extension to rectangular matrices. Quaest Math, 2018, 41(2): 265–281

DOI

7
Ferreyra D E, Orquera V, Thome N. A weak group inverse for rectangular matrices. Rev R Acad Cienc Exactas Fís Nat Ser A Math RACSAM, 2019, 113(4): 3727–3740

DOI

8
Gao Y, Chen J. Pseudo core inverses in rings with involution. Comm Algebra, 2018, 46(1): 38–50

DOI

9
Gao Y, Chen J, Patrício P.Representations and properties of the W-weighted core-EP inverse. Linear Multilinear Algebra, 2018, https://doi.org/10.1080/03081087.2018. 1535573

DOI

10
Koliha J J. A generalized Drazin inverse. Glasg Math J, 1996, 38: 367–381

DOI

11
Mitra S K, Bhimasankaram P, Malik S B. Matrix Partial Orders, Shorted Operators and Applications. Series in Algebra, Vol 10. Singapore: World Scientific, 2010

DOI

12
Mosić D. Core-EP pre-order of Hilbert space operators. Quaest Math, 2018, 41(5): 585–600

DOI

13
Mosić D. Generalized inverses. Nić: Faculty of Sciences and Mathematics, University of Nis; 2018

14
Mosić D.Weighted core-EP inverse of an operator between Hilbert spaces. Linear Multilinear Algebra, 2019, 67(2): 278–298

DOI

15
Mosić D,Djordjević D S. The gDMP inverse of Hilbert space operators. J Spectr Theory, 2018, 8(2): 555–573

DOI

16
Prasad K M, Mohana K S. Core-EP inverse. Linear Multilinear Algebra, 2014, 62(6): 792–802

DOI

17
Robles J, Martínez-Serrano M F, Dopazo E. On the generalized Drazin inverse in Banach algebras in terms of the generalized Schur complement. Appl Math Comput, 2016, 284: 162–168

DOI

18
Wang H. Core-EP decomposition and its applications. Linear Algebra Appl, 2016, 508: 289–300

DOI

19
Wang H, Chen J. Weak group inverse. Open Math, 2018, 16: 1218–1232

DOI

20
Wang X, Ma H,Stanimirović P S.Recurrent neural network for computing the W- weighted Drazin inverse. Appl Math Comput, 2017, 300: 1–20

DOI

21
Wang X, Yu A, Li T, Deng C. Reverse order laws for the Drazin inverses. J Math Anal Appl, 2016, 444(1): 672–689

DOI

22
Zhang D, Mosić D, Guo L. The Drazin inverse of the sum of four matrices and its applications. Linear Multilinear Algebra, 2020, 68(1): 133–151

DOI

23
Zhang D, Mosić D, Tam T. On the existence of group inverses of Peirce corner matrices. Linear Algebra Appl, 2019, 582: 482{498

DOI

24
Zhou M, Chen J,Li T, Wang D.Three limit representations of the core-EP inverse. Filomat, 2018, 32(17): 5887–5894

DOI

Outlines

/