RESEARCH ARTICLE

Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors

  • Hongmei YAO ,
  • Li MA ,
  • Chunmeng LIU ,
  • Changjiang BU
Expand
  • School of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China

Received date: 17 Feb 2020

Accepted date: 28 Apr 2020

Published date: 15 Jun 2020

Copyright

2020 Higher Education Press

Abstract

We give a Brualdi-type Z-eigenvalue inclusion set of tensors, and prove that it is tighter than the inclusion set given by G. Wang, G. L. Zhou, and L. Caccetta [Discrete Contin. Dyn. Syst. Ser. B, 2017, 22: 187–198] in a special case. We also give an inclusion set for lk,s-singular values of rectangular tensors.

Cite this article

Hongmei YAO , Li MA , Chunmeng LIU , Changjiang BU . Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors[J]. Frontiers of Mathematics in China, 2020 , 15(3) : 601 -612 . DOI: 10.1007/s11464-020-0837-x

1
Bloy L, Verma R. On computing the underlying fiber directions from the diffusion orientation distribution function. Medical Image Computing and Computer-Assisted Intervention, 2008, 5241: 1–8

DOI

2
Brualdi R A. Matrices, eigenvalues, and directed graphs. Linear Multilinear Algebra, 1982, 11: 143–165

DOI

3
Bu C J, Wei Y P, Sun L Z, Zhou J. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl, 2015, 480: 168–175

DOI

4
Chang K C, Pearson K, Zhang T. Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl, 2013, 438: 4166–4182

DOI

5
Dahl D, Leinaas J M, Myrheim J, Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420: 711–725

DOI

6
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 48: 696–702

DOI

7
Knowles J K, Sternberg E. On the ellipticity of the equations of nonlinear elastostatics for a special material. J Elasticity, 1975, 5: 341–361

DOI

8
Knowles J K, Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal. 1976, 63: 321–336

DOI

9
Kolda T, Mayo J. Shifted power method for computing tensor eigenpairs. SIAM J Matrix Anal Appl, 2011, 32: 1095–1124

DOI

10
Li C Q, Liu Q L, Wei Y M. Pseudospectra localizations for generalized tensor eigenvalues to seek more positive definite tensors. Comput Appl Math, 2019, 38: 183

DOI

11
Lim L H. Singular values and eigenvalues of tensors: a variational approach. IEEE International Workshop on Comput Advances in Multi-Sensor Adaptive Processing, 2005, 129–132

12
Ng M, Qi L Q, Zhou G. Finding the largest eigenvalue of a nonnegative tensor . SIAM J Matrix Anal Appl, 2009, 31: 1090–1099

DOI

13
Ni Q, Qi L Q, Wang F. An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans Automat Control, 2008, 53: 1096–1107

DOI

14
Qi L Q. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

DOI

15
Qi L Q, Yu G, Wu E X. Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci, 2010, 3: 416–433

DOI

16
Rosakis P. Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1–37

DOI

17
Schrödinger E. Die gegenwaätige situation in der quantenmechanik. Naturwissenschaften, 1935, 23: 807–812

DOI

18
Wang G, Zhou G L, Caccetta L. Z-Eigenvalue inclusion theorems for tensors. Discrete Contin Dyn Syst Ser B, 2017, 22: 187–198

DOI

19
Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity, 1996, 44: 89–96

DOI

20
Yao H M, Long B S, Bu C J, Zhou J.lk,s-Singular values and spectral radius of partially symmetric rectangular tensors . Front Math China, 2016, 11: 605–622

DOI

21
Yao H M, Zhang C, Liu L, Zhou J, Bu C J. Singular value inclusion sets of rectangular tensors. Linear Algebra Appl, 2019, 576: 181–199

DOI

22
Zhao J X, Li C Q. Singular value inclusion sets for rectangular tensors. Linear Multilinear Algebra, 2018, 66: 1333–1350

DOI

Outlines

/