RESEARCH ARTICLE

Existence and uniqueness for variational problem from progressive lens design

  • Huaiyu JIAN ,
  • Hongbo ZENG
Expand
  • Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received date: 12 Mar 2020

Accepted date: 16 Jun 2020

Published date: 15 Jun 2020

Copyright

2020 Higher Education Press

Abstract

We study a functional modelling the progressive lens design, which is a combination of Willmore functional and total Gauss curvature. First, we prove the existence for the minimizers of this class of functionals among the class of revolution surfaces rotated by the curves y = f(x) about the x-axis. Then, choosing such a minimiser as background surfaces to approximate the functional by a quadratic functional, we prove the existence and uniqueness of the solution to the Euler-Lagrange equation for the quadratic functionals. Our results not only provide a strictly mathematical proof for numerical methods, but also give a more reasonable and more extensive choice for the background surfaces.

Cite this article

Huaiyu JIAN , Hongbo ZENG . Existence and uniqueness for variational problem from progressive lens design[J]. Frontiers of Mathematics in China, 2020 , 15(3) : 491 -505 . DOI: 10.1007/s11464-020-0845-x

1
Bauer M, Kuwert E. Existence of minimizing the Willmore surfaces of prescribed genes. Int Math Res Not IMRN, 2003, 2003: 553–576

DOI

2
Bergner M, Dall’Acqua A, Frohlich S. Symmetry Willmore surfaces of revolution satisfying natural boundary conditions. Calc Var Partial Differential Equations, 2010, 39: 361–378

DOI

3
Canham P B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theoret Biol, 1970, 26: 61–76

DOI

4
Chen J, Li Y. Radially symmetric solutions to the graphic Willmore surface equation. J Geom Anal, 2017, 27: 671–681

DOI

5
Dall'Acqua A, Frohlich S, Grunau H C, Schieweck F. Symmetry Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv Calc Var, 2011, 4: 1–81

DOI

6
Eichmann S, Koeller A. Symmetry for Willmore surfaces of revolution. J Geom Anal, 2017, 27: 618–642

DOI

7
Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. New York: Springer-Verlag, 1983

8
Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Z Naturalforsch Teil C, 1973, 28: 693–703

DOI

9
Jiang W, Bao W, Tang Q, Wang H. A variational-difference numerical method for designing progressive-addition lenses. Comput-Aided Des, 2014, 48: 17–27

DOI

10
Kuwert E, Schätzle R. The Willmore functional. In: Mingione G, ed. Topics in Modern Regularity Theory. CRM Series, Vol 13. Pisa: Ed Norm, 2012, 1–115

DOI

11
Li Y. Some remarks on Willmore surfaces embedded in ℝ3. J Geom Anal, 2016, 26: 2411–2424

DOI

12
Loos J, Greiner G, Seidel H P. A variational approach to progressive lens design. Comput-Aided Des, 1998, 30: 595–602

DOI

13
Marques F C, Neves A. The Willmore conjecture. Jahresber Dtsch Math-Ver, 2014, 116: 201–222

DOI

14
Schäzle R. The Willmore boundary problem. Calc Var Partial Differential Equations, 2010, 37: 275–302

DOI

15
Simon L. Existence of surfaces minimizing the Willmore functional. Comm Anal Geom, 1993, 1: 281–326

DOI

16
Wang J, Gulliver R, Santosa F. Analysis of a variational approach to progressive lens design. SIAM J Appl Math, 2003, 64: 277–296

DOI

17
Wang J, Santosa F. A numerical methods for progressive lens design. Math Models Methods Appl Sci, 2004, 14: 619{640

DOI

18
Willmore T J. Note on embedded surfaces. An Ştiinţ Univ Al I Cuza Iaşi Mat, 1965, 11: 493–496

Outlines

/